Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1V. Kalogeiton.
Localizing spatially and temporally objects and actions in videos, University of Edinburgh ; Inria Grenoble, September 2017.
https://hal.inria.fr/tel-01674504 -
2J. Mairal.
Large-Scale Machine Learning and Applications, UGA - Université Grenoble Alpes, October 2017, Habilitation à diriger des recherches.
https://hal.inria.fr/tel-01629997 -
3M. Paulin.
Of Learning Visual Representations Robust to Invariances for Image Classification and Retrieval, Université Grenoble Alpes, February 2017.
https://hal.inria.fr/tel-01677852
Articles in International Peer-Reviewed Journals
-
4N. Chesneau, K. Alahari, C. Schmid.
Learning from Web Videos for Event Classification, in: IEEE Transactions on Circuits and Systems for Video Technology, 2017. [ DOI : 10.1109/TCSVT.2017.2764624 ]
https://hal.inria.fr/hal-01618400 -
5R. G. Cinbis, J. Verbeek, C. Schmid.
Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, January 2017, vol. 39, no 1, pp. 189-203, https://arxiv.org/abs/1503.00949. [ DOI : 10.1109/TPAMI.2016.2535231 ]
https://hal.inria.fr/hal-01123482 -
6G. Durif, L. Modolo, J. Michaelsson, J. E. Mold, S. Lambert-Lacroix, F. Picard.
High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression, in: Bioinformatics, 2017, https://arxiv.org/abs/1502.05933. [ DOI : 10.1093/bioinformatics/btx571 ]
https://hal.archives-ouvertes.fr/hal-01587360 -
7B. Ham, M. Cho, C. Schmid, J. Ponce.
Proposal Flow: Semantic Correspondences from Object Proposals, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, forthcoming.
https://hal.inria.fr/hal-01644132 -
8G. Hu, X. Peng, Y. Yang, T. Hospedales, J. Verbeek.
Frankenstein: Learning Deep Face Representations using Small Data, in: IEEE Transactions on Image Processing, January 2018, vol. 27, no 1, pp. 293-303, https://arxiv.org/abs/1603.06470. [ DOI : 10.1109/TIP.2017.2756450 ]
https://hal.inria.fr/hal-01306168 -
9A. Mensch, J. Mairal, B. Thirion, G. Varoquaux.
Stochastic Subsampling for Factorizing Huge Matrices, in: IEEE Transactions on Signal Processing, January 2018, vol. 66, no 1, pp. 113-128, https://arxiv.org/abs/1701.05363. [ DOI : 10.1109/TSP.2017.2752697 ]
https://hal.archives-ouvertes.fr/hal-01431618 -
10A. Mishra, K. Alahari, C. Jawahar.
Unsupervised refinement of color and stroke features for text binarization, in: International Journal on Document Analysis and Recognition, June 2017, vol. 20, no 2, pp. 105–121. [ DOI : 10.1007/s10032-017-0283-9 ]
https://hal.inria.fr/hal-01490176 -
11M. Paulin, J. Mairal, M. Douze, Z. Harchaoui, F. Perronnin, C. Schmid.
Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach, in: International Journal of Computer Vision, January 2017, vol. 121, no 1, pp. 149–168. [ DOI : 10.1007/s11263-016-0924-3 ]
https://hal.inria.fr/hal-01277109 -
12G. Varol, I. Laptev, C. Schmid.
Long-term Temporal Convolutions for Action Recognition, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, https://arxiv.org/abs/1604.04494, forthcoming. [ DOI : 10.1109/TPAMI.2017.2712608 ]
https://hal.inria.fr/hal-01241518
International Conferences with Proceedings
-
13A. Bietti, J. Mairal.
Invariance and Stability of Deep Convolutional Representations, in: NIPS 2017 - 31st Conference on Advances in Neural Information Processing Systems, Los Angeles, CA, United States, December 2017.
https://hal.inria.fr/hal-01630265 -
14A. Bietti, J. Mairal.
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure, in: NIPS 2017 - Advances in Neural Information Processing Systems, Long Beach, CA, United States, December 2017, pp. 1-21, https://arxiv.org/abs/1610.00970.
https://hal.inria.fr/hal-01375816 -
15N. Chesneau, G. Rogez, K. Alahari, C. Schmid.
Detecting Parts for Action Localization, in: BMVC - British Machine Vision Conference, London, United Kingdom, September 2017, https://arxiv.org/abs/1707.06005.
https://hal.inria.fr/hal-01573629 -
16N. Dvornik, K. Shmelkov, J. Mairal, C. Schmid.
BlitzNet: A Real-Time Deep Network for Scene Understanding, in: ICCV 2017 - International Conference on Computer Vision, Venise, Italy, October 2017, 11 p.
https://hal.archives-ouvertes.fr/hal-01573361 -
17K. K. Han, R. S. Rezende, B. Ham, K.-Y. K. Wong, M. Cho, C. S. Schmid, J. S. Ponce.
SCNet: Learning Semantic Correspondence, in: International Conference on Computer Vision, Venise, Italy, International conference on computer vision, October 2017, https://arxiv.org/abs/1705.04043.
https://hal.archives-ouvertes.fr/hal-01576117 -
18V. Kalogeiton, P. Weinzaepfel, V. Ferrari, C. Schmid.
Action Tubelet Detector for Spatio-Temporal Action Localization, in: ICCV - IEEE International Conference on Computer Vision, Venice, Italy, October 2017, https://arxiv.org/abs/1705.01861.
https://hal.inria.fr/hal-01519812 -
19V. Kalogeiton, P. Weinzaepfel, V. Ferrari, C. Schmid.
Joint learning of object and action detectors, in: ICCV 2017 - IEEE International Conference on Computer Vision, Venice, Italy, October 2017.
https://hal.inria.fr/hal-01575804 -
20P. Luc, N. Neverova, C. Couprie, J. Verbeek, Y. Lecun.
Predicting Deeper into the Future of Semantic Segmentation, in: ICCV 2017 - International Conference on Computer Vision, Venise, Italy, October 2017, 10 p, https://arxiv.org/abs/1703.07684.
https://hal.inria.fr/hal-01494296 -
21A. Mensch, J. Mairal, D. Bzdok, B. Thirion, G. Varoquaux.
Learning Neural Representations of Human Cognition across Many fMRI Studies, in: Neural Information Processing Systems, Long Beach, United States, December 2017, https://arxiv.org/abs/1710.11438.
https://hal.archives-ouvertes.fr/hal-01626823 -
22M. Pedersoli, T. Lucas, C. Schmid, J. Verbeek.
Areas of Attention for Image Captioning, in: ICCV - International Conference on Computer Vision, Venice, Italy, October 2017.
https://hal.inria.fr/hal-01428963 -
23J. Peyre, I. Laptev, C. Schmid, J. Sivic.
Weakly-supervised learning of visual relations, in: ICCV 2017- International Conference on Computer Vision 2017, Venice, Italy, October 2017, https://arxiv.org/abs/1707.09472.
https://hal.archives-ouvertes.fr/hal-01576035 -
24G. Rogez, P. Weinzaepfel, C. Schmid.
LCR-Net: Localization-Classification-Regression for Human Pose, in: CVPR 2017 - IEEE Conference on Computer Vision & Pattern Recognition, Honolulu, United States, June 2017.
https://hal.inria.fr/hal-01505085 -
25K. Shmelkov, C. Schmid, K. Alahari.
Incremental Learning of Object Detectors without Catastrophic Forgetting, in: ICCV - IEEE International Conference on Computer Vision, Venice, Italy, October 2017.
https://hal.inria.fr/hal-01573623 -
26P. Tokmakov, K. Alahari, C. Schmid.
Learning Motion Patterns in Videos, in: CVPR - IEEE Conference on Computer Vision & Pattern Recognition, Honolulu, United States, July 2017, https://arxiv.org/abs/1612.07217.
https://hal.archives-ouvertes.fr/hal-01427480 -
27P. Tokmakov, K. Alahari, C. Schmid.
Learning Video Object Segmentation with Visual Memory, in: ICCV - IEEE International Conference on Computer Vision, Venice, Italy, October 2017, https://arxiv.org/abs/1704.05737.
https://hal.archives-ouvertes.fr/hal-01511145 -
28G. Varol, J. J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, C. Schmid.
Learning from Synthetic Humans, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, United States, July 2017, https://arxiv.org/abs/1701.01370. [ DOI : 10.1109/CVPR.2017.492 ]
https://hal.inria.fr/hal-01505711
Other Publications
-
29A. Bietti, J. Mairal.
Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations, November 2017, https://arxiv.org/abs/1706.03078 - working paper or preprint.
https://hal.inria.fr/hal-01536004 -
30D. Chen, L. Jacob, J. Mairal.
Predicting Transcription Factor Binding Sites with Convolutional Kernel Networks, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01632912 -
31T. Dias-Alves, J. Mairal, M. Blum.
Loter: A software package to infer local ancestry for a wide range of species, November 2017, working paper or preprint. [ DOI : 10.1101/213728 ]
https://hal.inria.fr/hal-01630228 -
32G. Durif, L. Modolo, J. E. Mold, S. Lambert-Lacroix, F. Picard.
Probabilistic Count Matrix Factorization for Single Cell Expression Data Analysis, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01649275 -
33T. LUCAS, J. Verbeek.
Auxiliary Guided Autoregressive Variational Autoencoders, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01652881 -
34H. Lin, J. Mairal, Z. Harchaoui.
A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization, April 2017, https://arxiv.org/abs/1610.00960 - working paper or preprint.
https://hal.inria.fr/hal-01376079 -
35H. Lin, J. Mairal, Z. Harchaoui.
Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice, December 2017, working paper or preprint.
https://hal.inria.fr/hal-01664934 -
36C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, Z. Harchaoui.
Catalyst Acceleration for Gradient-Based Non-Convex Optimization, June 2017, working paper or preprint.
https://hal.inria.fr/hal-01536017 -
37P. Tokmakov, C. Schmid, K. Alahari.
Learning to Segment Moving Objects, December 2017, https://arxiv.org/abs/1712.01127 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01653720 -
38K. Tombre, L. Quan, R. Horaud, P. Gros, C. Schmid, P. Sturm.
In Memoriam Roger Mohr, Société Informatique de France, September 2017, pp. 91-98, Article qui rappelle la carrière scientifique de Roger Mohr.
https://hal.inria.fr/hal-01598085 -
39N. Verma, E. Boyer, J. Verbeek.
Dynamic Filters in Graph Convolutional Networks, June 2017, https://arxiv.org/abs/1706.05206 - working paper or preprint.
https://hal.inria.fr/hal-01540389 -
40P. Weinzaepfel, X. MARTIN, C. Schmid.
Human Action Localization with Sparse Spatial Supervision, May 2017, https://arxiv.org/abs/1605.05197 - working paper or preprint.
https://hal.inria.fr/hal-01317558