Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1M. Abdallah, M. Blonski, S. Wantz-Mézières, Y. Gaudeau, L. Taillandier, J.-M. Moureaux.
On the relevance of two manual tumor volume estimation methods for diffuse low-grade gliomas, in: Healthcare Technology Letters, February 2018, vol. 5, no 1, pp. 13-17. [ DOI : 10.1049/htl.2017.0013 ]
https://hal.inria.fr/hal-01654158 -
2R. Azaïs, B. Delyon, F. Portier.
Integral estimation based on Markovian design, in: Advances in Applied Probability, 2018, vol. 50, no 3, pp. 833-857, https://arxiv.org/abs/1609.01165v2 - 45 pages. [ DOI : 10.1017/apr.2018.38 ]
https://hal.archives-ouvertes.fr/hal-01360647 -
3R. Azaïs, A. Genadot.
A new characterization of the jump rate for piecewise-deterministic Markov processes with discrete transitions, in: Communication in Statistics - Theory and Methods, 2018, vol. 47, no 8, pp. 1812-1829, https://arxiv.org/abs/1606.06130. [ DOI : 10.1080/03610926.2017.1327072 ]
https://hal.archives-ouvertes.fr/hal-01334847 -
4L. Batista, T. Bastogne, A. Delaunois, J.-P. Valentin, F. Atienzar.
A novel statistical signal processing method to estimate effects of compounds on contractility of cardiomyocytes using impedance assays, in: Biomedical Signal Processing and Control, August 2018, vol. 45, pp. 202-212. [ DOI : 10.1016/j.bspc.2018.05.038 ]
https://hal.archives-ouvertes.fr/hal-01621227 -
5F. Bouguet.
A Probabilistic Look at Growth-Fragmentation Equations, in: Séminaire de Probabilités, 2018, vol. XLIX, https://arxiv.org/abs/1609.02414.
https://hal.archives-ouvertes.fr/hal-01362555 -
6F. Bouguet, B. Cloez.
Fluctuations of the Empirical Measure of Freezing Markov Chains, in: Electronic Journal of Probability, 2018, vol. 23, https://arxiv.org/abs/1705.02121. [ DOI : 10.1214/17-EJP130 ]
https://hal.archives-ouvertes.fr/hal-01519611 -
7K. Duarte, J.-M. Monnez, E. Albuisson.
Methodology for Constructing a Short-Term Event Risk Score in Heart Failure Patients, in: Applied Mathematics, 2018, vol. 09, no 08, pp. 954 - 974. [ DOI : 10.4236/am.2018.98065 ]
https://hal.inria.fr/hal-01933625 -
8K. Duarte, J.-M. Monnez, E. Albuisson.
Sequential linear regression with online standardized data, in: PLoS ONE, 2018, pp. 1-27. [ DOI : 10.1371/journal.pone.0191186 ]
https://hal.archives-ouvertes.fr/hal-01538125 -
9A. Lagnoux, S. Mercier, P. Vallois.
Probability density function of the local score position, in: Stochastic Processes and their Applications, 2018.
https://hal.archives-ouvertes.fr/hal-01835781 -
10S. Toupance, D. Villemonais, D. Germain, A. Gégout-Petit, E. Albuisson, A. Benetos.
The individual’s signature of telomere length distribution, in: Scientific Reports, 2018.
https://hal.inria.fr/hal-01925000 -
11G. Vogin, T. Bastogne, L. Bodgi, J. Gillet-Daubin, A. Canet, S. Pereira, N. Foray.
The pATM Immunofluorescence assay: a high-performance radiosensitivity assay to predict post radiotherapy overreactions, in: International Journal of Radiation Oncology - Biology - Physics, July 2018, vol. 101, no 3, pp. 690–693. [ DOI : 10.1016/j.ijrobp.2018.03.047 ]
https://hal.archives-ouvertes.fr/hal-01757771
International Conferences with Proceedings
-
12Y. Efroni, G. Dalal, B. Scherrer, S. Mannor.
Anderson acceleration for reinforcement learning, in: EWRL 2018 - 14th European workshop on Reinforcement Learning, Lille, France, October 2018, https://arxiv.org/abs/1809.09501.
https://hal.inria.fr/hal-01927977 -
13Y. Efroni, G. Dalal, B. Scherrer, S. Mannor.
Beyond the one-step greedy approach in reinforcement learning, in: ICML 2018 - 35th International Conference on Machine Learning, Stockholm, Sweden, July 2018, https://arxiv.org/abs/1802.03654.
https://hal.inria.fr/hal-01927939 -
14Y. Efroni, G. Dalal, B. Scherrer, S. Mannor.
Multiple-step greedy policies in online and approximate reinforcement learning, in: NeurIPS 2018 - Thirty-second Conference on Neural Information Processing Systems, Montréal, Canada, December 2018, https://arxiv.org/abs/1805.07956.
https://hal.inria.fr/hal-01927962 -
15M. Geist, B. Scherrer.
Anderson acceleration for reinforcement learning, in: EWRL 2018 - 4th European workshop on Reinforcement Learning, Lille, France, October 2018, https://arxiv.org/abs/1809.09501.
https://hal.inria.fr/hal-01928142
Conferences without Proceedings
-
16T. Bastogne, V. Jouan-Hureaux, M. Thomassin.
A new approach for a physicochemical characterization of nanoparticles in complex media: a pilot study, in: NanoMedicine International Conference, NanoMedicine 2018, Venise, Italy, October 2018, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925854 -
17L. Batista, T. Bastogne.
Robust estimation of field potential duration in multi-electrode array signals, in: Annual Meeting of Safety Pharmacology Society, SPS 2018, Washington DC, United States, September 2018, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925650 -
18L. Batista, R. Contu, B. Van Hese, F. Zanella, T. Bastogne.
Automated classification of early afterdepolarizations grades in flipr calcium assays, in: Annual Meeting of Safety Pharmacology Society, SPS 2018, Washington DC, United States, September 2018, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925678 -
19S. Deneuve, C. Mirjolet, M. Duclos, R. Blanchard, P. Retif, N. Foray, T. Bastogne, S. Pereira.
Fast, reliable and cost-effective assay on lymphocytes to predict radiosensitivity: development on prostate and head and neck cohort, in: Annual Meeting of American Society for Therapeutic Radiology and Oncology, ASTRO 2018, San Antonio, Texas, United States, October 2018, Abstract published in International Journal of Radiation Oncology, 102(3):e171, November 2018. [ DOI : 10.1016/j.ijrobp.2018.07.643 ]
https://hal.archives-ouvertes.fr/hal-01925681 -
20S. Deneuve, C. Mirjolet, M. Duclos, G. Vogin, T. Bastogne, S. Pereira.
Fast and binary assay for predicting radiosensitivity based on the theory of the ATM nucleoshuttling, in: 37th Annual Congress of the European Society for Radiotherapy & Oncology, ESTRO 37, Barcelona, Spain, April 2018, pp. EP-2274, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925684 -
21K. Duarte, J.-M. Monnez, E. Albuisson.
Construction d'un score d'événement à court terme pour les insuffisants cardiaques, in: 50èmes Journées de statistique de la Société Française de Statistique, Saclay, France, May 2018.
https://hal.archives-ouvertes.fr/hal-01813148 -
22K. Duarte, J.-M. Monnez, E. Albuisson.
Score de risque d'événement et score en ligne pour des insuffisants cardiaques, in: SFC 2018 - XXVèmes Rencontres de la Société Francophone de Classification, Paris, France, September 2018.
https://hal.archives-ouvertes.fr/hal-01879126 -
23P. Guyot, B. Chenuel, E.-H. Djermoune, T. Bastogne.
Early detection of Cheyne-Stokes breathing via ECG-derived respiration in patients with severe heart failure: a pilot study, in: 45th Computing in Cardiology Conference, CinC 2018, Maastricht, Netherlands, September 2018.
https://hal.archives-ouvertes.fr/hal-01925852 -
24P. Guyot, E.-H. Djermoune, T. Bastogne.
Assessment of non-negative matrix factorization for the preprocessing of long-term ECG, in: Annual Meeting of Safety Pharmacology Society, SPS 2018, Washington DC, United States, September 2018, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925679 -
25P. Guyot, P. Voiriot, E.-H. Djermoune, S. Papelier, C. Lessard, M. Felices, T. Bastogne.
R-peak detection in holter ECG signals using non-negative matrix factorization, in: 45th Computing in Cardiology Conference, CinC 2018, Maastricht, Netherlands, September 2018.
https://hal.archives-ouvertes.fr/hal-01925853 -
26A. Gégout-Petit, C. Fritsch, M. Grosdidier, B. Marcais.
Spatio-temporal modelling of the spread of chalara (illness of the ash tree) in France, in: CMStatistics 2018 - 11th International Conference of the ERCIM WG on Computational and Methodological Statistics, Pisa, Italy, December 2018.
https://hal.inria.fr/hal-01925454 -
27A. Gégout-Petit, N. Sahki, S. Mézières-Wantz.
Change-point detection methods in the online context, in: ENBIS-18 18th Annual Conference of the European Network for Business and Industrial Statistics, Nancy, France, September 2018.
https://hal.archives-ouvertes.fr/hal-01915726 -
28C. Karmann, A. Gégout-Petit.
Régression logistique polytomique pénalisée a logits cumulatifs, in: Journées de statistiques, Saclay, France, May 2018.
https://hal.archives-ouvertes.fr/hal-01929996 -
29Y. Kolasa, T. Bastogne, J.-P. Georges.
Simulation and sensitivity analysis of sensors network for cardiac monitoring, in: 8th International Digital Health Conference, DH2018, Lyon, France, April 2018.
https://hal.archives-ouvertes.fr/hal-01925649 -
30Y. Kolasa, J.-P. Georges, T. Bastogne.
Computer-aided design of ECG telemetry systems for online cardiac monitoring, in: Annual Meeting of Safety Pharmacology Society, SPS 2018, Washington DC, United States, September 2018, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925675
Scientific Books (or Scientific Book chapters)
-
31R. Azaïs, A. Gégout-Petit, F. Greciet.
Rupture Detection in Fatigue Crack Propagation, in: Statistical Inference for Piecewise-deterministic Markov Processes, Wiley, August 2018, pp. 173-207. [ DOI : 10.1002/9781119507338.ch6 ]
https://hal.archives-ouvertes.fr/hal-01862267 -
32E. Boissard, P. Cattiaux, A. Guillin, L. Miclo, F. Bouguet, J. Brossard, C. Leuridan, M. Capitaine, N. Champagnat, K. A. Coulibaly-Pasquier, D. Villemonais, H. E. Altman, P. Kratz, E. Pardoux, A. Lejay, P. McGill, G. Pagès, B. Wilbertz, P. Petit, B. Rajeev, L. Serlet, H. Tsukada.
C. Donati-Martin, A. Lejay, A. Rouault (editors), Séminaire de probabilités XLIX, Lecture notes in mathematics, Springer, July 2018, vol. 2215. [ DOI : 10.1007/978-3-319-92420-5 ]
https://hal.inria.fr/hal-01931202
Books or Proceedings Editing
-
33R. Azaïs, F. Bouguet (editors)
Statistical Inference for Piecewise-deterministic Markov Processes, Wiley, August 2018, pp. i-xxxiv 1-260. [ DOI : 10.1002/9781119507338 ]
https://hal.archives-ouvertes.fr/hal-01862248
Scientific Popularization
-
34F. Greciet, R. Azaïs, A. Gégout-Petit.
Detection and modeling of the propagation regimes in fatigue crack propagation, in: ENBIS 2018 - 18th Annual Conference of the European Network for Business and Industrial Statistics, Nancy, France, September 2018.
https://hal.inria.fr/hal-01942243 -
35A. Gégout-Petit, S. Wantz-Mézières, N. Sahki.
Retours d'expériences autour de l'évaluation des objets connectés en santé, fiabilité et aide à la décision, in: 1ères rencontres académiques de l’Evaluation des objets connectés en santé, Paris, France, October 2018.
https://hal.inria.fr/hal-01924979
Patents
-
36T. Bastogne.
Lot de milieux de mesure, obtention et utilisation de ce lot pour prédire le comportement d'un nanomatériau dans un milieu naturel complexe, 2018, no 1661671.
https://hal.archives-ouvertes.fr/hal-01544659
Other Publications
-
37R. Azaïs, S. Ferrigno, M.-J. Martinez.
An R package for Cramér-von Mises goodness-of-fit tests in regression models, December 2018, CMStatistics 2018 - 11th International Conference of the ERCIM WG on Computational and Methodological Statistics, Poster.
https://hal.inria.fr/hal-01935348 -
38B. Bastien, H. Chakir, A. Gégout-Petit, A. Muller-Gueudin, Y. Shi.
A statistical methodology to select covariates in high-dimensional data under dependence. Application to the classification of genetic profiles associated with outcome of a non-small-cell lung cancer treatment, November 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01939694 -
39L. Batista, L. Doerr, K. Juhasz, S. Stoelzle-Feix, M. Beckler, T. Bastogne.
Mixed-effects modeling for concentration effect profiling in cardiomyocyte contractility assays, September 2018, Annual Meeting of Safety Pharmacology Society, SPS 2018, Présentation Poster.
https://hal.archives-ouvertes.fr/hal-01925651 -
40A. Deveau, A. Gégout-Petit, C. Karmann.
Penalized polytomous ordinal logistic regression using cumulative logits. Application to network inference of zero-inflated variables, May 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01799914 -
41A. Gégout-Petit, L. Guérin-Dubrana, S. Li.
A new centered spatio-temporal autologistic regression model. Application to spatio-temporal analysis of esca disease in a vineyard, November 2018, https://arxiv.org/abs/1811.06782 - working paper or preprint.
https://hal.inria.fr/hal-01926115 -
42A. Lejay, L. Lenôtre, G. Pichot.
An exponential timestepping algorithm for diffusion with discontinuous coefficients, June 2018, working paper or preprint.
https://hal.inria.fr/hal-01806465 -
43J.-M. Monnez, A. Skiredj.
Convergence of a normed eigenvector stochastic approximation process and application to online principal component analysis of a data stream, July 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01844419
-
44R. Azaïs.
A recursive nonparametric estimator for the transition kernel of a piecewise-deterministic Markov process, in: ESAIM: Probability and Statistics, 2014, vol. 18, pp. 726–749. -
45R. Azaïs, F. Dufour, A. Gégout-Petit.
Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes, in: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Institut Henri Poincaré, 2013, vol. 49, no 4, pp. 1204–1231. -
46R. Azaïs, F. Dufour, A. Gégout-Petit.
Non-Parametric Estimation of the Conditional Distribution of the Interjumping Times for Piecewise-Deterministic Markov Processes, in: Scandinavian Journal of Statistics, December 2014, vol. 41, no 4, pp. 950–969. [ DOI : 10.1111/sjos.12076 ]
https://hal.archives-ouvertes.fr/hal-01103700 -
47R. Azaïs, A. Muller-Gueudin.
Optimal choice among a class of nonparametric estimators of the jump rate for piecewise-deterministic Markov processes, in: Electronic journal of statistics , 2016.
https://hal.archives-ouvertes.fr/hal-01168651 -
48R. Azaïs, A. Genadot.
Level Crossings and Absorption of an Insurance Model, in: Statistical Inference for Piecewise-deterministic Markov Processes, R. Azaïs, F. Bouguet (editors), Wiley, August 2018, pp. 65-105. [ DOI : 10.1002/9781119507338.ch3 ]
https://hal.archives-ouvertes.fr/hal-01862266 -
49J. M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M. Taqqu.
Semi-parametric estimation of the long-range dependence parameter: a survey, in: Theory and applications of long-range dependence, Birkhauser Boston, 2003, pp. 557-577. -
50T. Bastogne, S. Mézières-Wantz, N. Ramdani, P. Vallois, M. Barberi-Heyob.
Identification of pharmacokinetics models in the presence of timing noise, in: Eur. J. Control, 2008, vol. 14, no 2, pp. 149–157.
http://dx.doi.org/10.3166/ejc.14.149-157 -
51T. Bastogne, A. Samson, P. Vallois, S. Wantz-Mézières, S. Pinel, D. Bechet, M. Barberi-Heyob.
Phenomenological modeling of tumor diameter growth based on a mixed effects model, in: Journal of theoretical biology, 2010, vol. 262, no 3, pp. 544–552. -
52D. Bertsekas, J. Tsitsiklis.
Neurodynamic Programming, Athena Scientific, 1996. -
53H. Biermé, C. Lacaux, H.-P. Scheffler.
Multi-operator Scaling Random Fields, in: Stochastic Processes and their Applications, 2011, vol. 121, no 11, pp. 2642-2677, MAP5 2011-01. [ DOI : 10.1016/j.spa.2011.07.002 ]
http://hal.archives-ouvertes.fr/hal-00551707/en/ -
54H. Cardot, P. Cénac, J.-M. Monnez.
A fast and recursive algorithm for clustering large datasets with k-medians, in: Computational Statistics & Data Analysis, 2012, vol. 56, no 6, pp. 1434–1449. -
55J. F. Coeurjolly.
Simulation and identification of the fractional brownian motion: a bibliographical and comparative study, in: Journal of Statistical Software, 2000, vol. 5, pp. 1–53. -
56M. H. Davis.
Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models, in: Journal of the Royal Statistical Society. Series B (Methodological), 1984, pp. 353–388. -
57A. Deya, S. Tindel.
Rough Volterra equations. I. The algebraic integration setting, in: Stoch. Dyn., 2009, vol. 9, no 3, pp. 437–477.
http://dx.doi.org/10.1142/S0219493709002737 -
58M. Doumic, M. Hoffmann, N. Krell, L. Robert.
Statistical estimation of a growth-fragmentation model observed on a genealogical tree, in: Bernoulli, 2015, vol. 21, no 3, pp. 1760–1799. -
59S. Ferrigno, G. R. Ducharme.
Un test d'adéquation global pour la fonction de répartition conditionnelle, in: Comptes Rendus Mathematique, 2005, vol. 341, no 5, pp. 313–316. -
60S. Ferrigno, M. Maumy-Bertrand, A. Muller-Gueudin.
Uniform law of the logarithm for the local linear estimator of the conditional distribution function, in: C. R. Math. Acad. Sci. Paris, 2010, vol. 348, no 17-18, pp. 1015–1019.
http://dx.doi.org/10.1016/j.crma.2010.08.003 -
61J. Friedman, T. Hastie, R. Tibshirani.
Sparse inverse covariance estimation with the graphical lasso, in: Biostatistics, 2008, vol. 9, no 3, pp. 432–441. -
62C. Giraud, S. Huet, N. Verzelen.
Graph selection with GGMselect, in: Statistical applications in genetics and molecular biology, 2012, vol. 11, no 3. -
63T. Hansen, U. Zwick.
Lower Bounds for Howard's Algorithm for Finding Minimum Mean-Cost Cycles, in: ISAAC (1), 2010, pp. 415-426. -
64S. Herrmann, P. Vallois.
From persistent random walk to the telegraph noise, in: Stoch. Dyn., 2010, vol. 10, no 2, pp. 161–196.
http://dx.doi.org/10.1142/S0219493710002905 -
65J. Hu, W.-C. Wu, S. Sastry.
Modeling subtilin production in bacillus subtilis using stochastic hybrid systems, in: Hybrid Systems: Computation and Control, Springer, 2004, pp. 417–431. -
66R. Keinj, T. Bastogne, P. Vallois.
Multinomial model-based formulations of TCP and NTCP for radiotherapy treatment planning, in: Journal of Theoretical Biology, June 2011, vol. 279, no 1, pp. 55-62. [ DOI : 10.1016/j.jtbi.2011.03.025 ]
http://hal.inria.fr/hal-00588935/en -
67R. Koenker.
Quantile regression, Cambridge university press, 2005, no 38. -
68Y. A. Kutoyants.
Statistical inference for ergodic diffusion processes, Springer Series in Statistics, Springer-Verlag London Ltd., London, 2004, xiv+481 p. -
69C. Lacaux.
Real Harmonizable Multifractional Lévy Motions, in: Ann. Inst. Poincaré., 2004, vol. 40, no 3, pp. 259–277. -
70L. Lebart.
On the Benzecri's method for computing eigenvectors by stochastic approximation (the case of binary data), in: Compstat 1974 (Proc. Sympos. Computational Statist., Univ. Vienna, Vienna, 1974), Vienna, Physica Verlag, 1974, pp. 202–211. -
71B. Lesner, B. Scherrer.
Non-Stationary Approximate Modified Policy Iteration, in: ICML 2015, Lille, France, July 2015.
https://hal.inria.fr/hal-01186664 -
72T. Lyons, Z. Qian.
System control and rough paths, Oxford mathematical monographs, Clarendon Press, 2002.
http://books.google.com/books?id=H9fRQNIngZYC -
73N. Meinshausen, P. Bühlmann.
High-dimensional graphs and variable selection with the lasso, in: The Annals of Statistics, 2006, pp. 1436–1462. -
74J.-M. Monnez.
Approximation stochastique en analyse factorielle multiple, in: Ann. I.S.U.P., 2006, vol. 50, no 3, pp. 27–45. -
75J.-M. Monnez.
Stochastic approximation of the factors of a generalized canonical correlation analysis, in: Statist. Probab. Lett., 2008, vol. 78, no 14, pp. 2210–2216.
http://dx.doi.org/10.1016/j.spl.2008.01.088 -
76J.-M. Monnez.
Convergence d'un processus d'approximation stochastique en analyse factorielle, in: Publ. Inst. Statist. Univ. Paris, 1994, vol. 38, no 1, pp. 37–55. -
77E. Nadaraya.
On non-parametric estimates of density functions and regression curves, in: Theory of Probability & Its Applications, 1965, vol. 10, no 1, pp. 186–190. -
78I. Post, Y. Ye.
The simplex method is strongly polynomial for deterministic Markov decision processes, arXiv:1208.5083v2, 2012. -
79M. Puterman.
Markov Decision Processes, Wiley, New York, 1994. -
80B. Roynette, P. Vallois, M. Yor.
Brownian penalisations related to excursion lengths, VII, in: Annales de l'IHP Probabilités et statistiques, 2009, vol. 45, no 2, pp. 421–452. -
81F. Russo, P. Vallois.
Stochastic calculus with respect to continuous finite quadratic variation processes, in: Stochastics: An International Journal of Probability and Stochastic Processes, 2000, vol. 70, no 1-2, pp. 1–40. -
82F. Russo, P. Vallois.
Elements of stochastic calculus via regularization, in: Séminaire de Probabilités XL, Berlin, Lecture Notes in Math., Springer, 2007, vol. 1899, pp. 147–185.
http://dx.doi.org/10.1007/978-3-540-71189-6_7 -
83B. Scherrer, M. Ghavamzadeh, V. Gabillon, B. Lesner, M. Geist.
Approximate Modified Policy Iteration and its Application to the Game of Tetris, in: Journal of Machine Learning Research, 2015, vol. 16, pp. 1629–1676, A paraître.
https://hal.inria.fr/hal-01091341 -
84B. Scherrer, B. Lesner.
On the Use of Non-Stationary Policies for Stationary Infinite-Horizon Markov Decision Processes, in: NIPS 2012 - Neural Information Processing Systems, South Lake Tahoe, United States, December 2012.
https://hal.inria.fr/hal-00758809 -
85B. Scherrer.
Performance Bounds for Lambda Policy Iteration and Application to the Game of Tetris, in: Journal of Machine Learning Research, January 2013, vol. 14, pp. 1175-1221.
https://hal.inria.fr/hal-00759102 -
86B. Scherrer.
Approximate Policy Iteration Schemes: A Comparison, in: ICML - 31st International Conference on Machine Learning - 2014, Pékin, China, June 2014.
https://hal.inria.fr/hal-00989982 -
87B. Scherrer.
Improved and Generalized Upper Bounds on the Complexity of Policy Iteration, in: Mathematics of Operations Research, February 2016, Markov decision processes ; Dynamic Programming ; Analysis of Algorithms. [ DOI : 10.1287/moor.2015.0753 ]
https://hal.inria.fr/hal-00829532 -
88P. Vallois, C. S. Tapiero.
Memory-based persistence in a counting random walk process, in: Phys. A., 2007, vol. 386, no 1, pp. 303–307.
http://dx.doi.org/10.1016/j.physa.2007.08.027 -
89P. Vallois.
The range of a simple random walk on Z, in: Advances in applied probability, 1996, pp. 1014–1033. -
90N. Villa-Vialaneix.
An introduction to network inference and mining, 2015, http://wikistat.fr/, (consulté le 22/07/2015).
http://www.nathalievilla.org/doc/pdf//wikistat-network_compiled.pdf -
91Y. Ye.
The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate, in: Math. Oper. Res., 2011, vol. 36, no 4, pp. 593-603.