Bibliography
Major publications by the team in recent years
-
1R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses, in: Chaos, Solitons & Fractals, 2013, vol. 50, no 13, 3 p. -
2R. Cofré, B. Cessac.
Exact computation of the maximum-entropy potential of spiking neural-network models, in: Phys. Rev. E, 2014, vol. 89, no 052117. -
3M.-J. Escobar, G. S. Masson, T. Viéville, P. Kornprobst.
Action Recognition Using a Bio-Inspired Feedforward Spiking Network, in: International Journal of Computer Vision, 2009, vol. 82, no 3, 284 p.
ftp://ftp-sop.inria.fr/neuromathcomp/publications/2009/escobar-masson-etal:09.pdf -
4O. Faugeras, J. Touboul, B. Cessac.
A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs, in: Frontiers in Computational Neuroscience, 2009, vol. 3, no 1. [ DOI : 10.3389/neuro.10.001.2010 ]
http://arxiv.org/abs/0808.1113 -
5D. Karvouniari, L. Gil, O. Marre, S. Picaud, B. Cessac.
A biophysical model explains the oscillatory behaviour of immature starburst amacrine cells, 2018, submitted to Scientific Reports.
https://hal.inria.fr/hal-01484133 -
6T. Masquelier, G. Portelli, P. Kornprobst.
Microsaccades enable efficient synchrony-based coding in the retina: a simulation study, in: Scientific Reports, April 2016, vol. 6, 24086. [ DOI : 10.1038/srep24086 ]
http://hal.upmc.fr/hal-01301838 -
7N. V. K. Medathati, H. Neumann, G. S. Masson, P. Kornprobst.
Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision, in: Computer Vision and Image Understanding (CVIU), April 2016. [ DOI : 10.1016/j.cviu.2016.04.009 ]
https://hal.inria.fr/hal-01316103 -
8J. Naudé, B. Cessac, H. Berry, B. Delord.
Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks, in: Journal of Neuroscience, 2013, vol. 33, no 38, pp. 15032-15043. [ DOI : 10.1523/JNEUROSCI.0870-13.2013 ]
https://hal.inria.fr/hal-00844218 -
9J. Rankin, A. I. Meso, G. S. Masson, O. Faugeras, P. Kornprobst.
Bifurcation Study of a Neural Fields Competition Model with an Application to Perceptual Switching in Motion Integration, in: Journal of Computational Neuroscience, 2014, vol. 36, no 2, pp. 193–213.
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10827-013-0465-5 -
10A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4.
Doctoral Dissertations and Habilitation Theses
-
11T. Karvouniari.
Retinal waves : theory, numerics, experiments, Université Côte d'Azur, March 2018.
https://tel.archives-ouvertes.fr/tel-01818522
Articles in International Peer-Reviewed Journals
-
12D. Karvouniari, L. Gil, O. Marre, S. Picaud, B. Cessac.
A biophysical model explains the oscillatory behaviour of immature starburst amacrine cells, in: Scientific Reports, 2018, https://arxiv.org/abs/1711.09199 - 25 pages, 15 figures, submitted.
https://hal.inria.fr/hal-01484133
Invited Conferences
-
13B. Cessac, D. Karvouniari, L. Gil, O. Marre, S. Picaud.
Ion channels and properties of large neuronal networks: a computational study of re.nal waves during development, in: Symposium on Ion channels and Channelopathies - IPMC, Sophia Antipolis, France, November 2018.
https://hal.archives-ouvertes.fr/hal-01925829 -
14B. Cessac, D. Karvouniari, L. Gil, O. Marre, S. Picaud.
Multi scale dynamics in retinal waves, in: Inspire New Insights on Complex Neural Dynamics, Cergy-Pontoise, France, June 2018.
https://hal.inria.fr/hal-01816919
International Conferences with Proceedings
-
15B. Cessac, R. Cofré.
Linear Response of General Observables in Spiking Neuronal Network Models, in: ICMNS 2018 - 4th International Conférence on Mathematical Neuroscience, Juan les Pins, France, June 2018, pp. 1-70.
https://hal.inria.fr/hal-01816920
Scientific Books (or Scientific Book chapters)
-
16B. Cessac.
The retina: a fascinating object of study for a physicist, in: UCA COMPLEX DAYS, 2018.
https://hal.archives-ouvertes.fr/hal-01807518
Internal Reports
-
17J. Gautier, N. Chleq, P. Kornprobst.
A Binocular LVA Device based on Mixed Reality to Enhance Face Recognition, Université Côte d’Azur, Inria, France, October 2018, no RR-9216, pp. 1-19.
https://hal.inria.fr/hal-01900574
Other Publications
-
18T. Andréoletti, B. Cessac, F. Chavane.
Decoding cortical activity evoked by artificial retinal implants, ENSEA-Inria, August 2018.
https://hal.inria.fr/hal-01895100 -
19B. Cessac, R. Cofré.
Linear response for spiking neuronal networks with unbounded memory, October 2018, https://arxiv.org/abs/1704.05344 - working paper or preprint.
https://hal.inria.fr/hal-01895095 -
20B. Cessac, D. Karvouniari, L. Gil, O. Marre, S. Picaud.
Retinal waves: experiments and theory, June 2018, Journées scientifiques de l'Inria.
https://hal.inria.fr/hal-01895099 -
21B. Cessac, P. Kornprobst, M. Benzi, I. Caugant, D. Karvouniari, E. Kartsaki, S. Souihel.
Biovision project-team: Biological vision: integrative models and vision aid systems for visually impaired people, October 2018, Fête de la science, Poster.
https://hal.inria.fr/hal-01896505 -
22R. Herzog, M.-J. Escobar, R. Cofré, A. Palacios, B. Cessac.
Dimensionality Reduction on Spatio-Temporal Maximum Entropy Models of Spiking Networks, November 2018, working paper or preprint. [ DOI : 10.1101/278606 ]
https://hal.inria.fr/hal-01917485 -
23E. Kartsaki, B. Cessac, G. Hilgen, E. Sernagor.
How specific classes of retinal cells contribute to vision: A Computational Model, June 2018, C@uca 2018 Meeting, Poster.
https://hal.inria.fr/hal-01816921 -
24D. Karvouniari, L. Gil, O. Marre, S. Picaud, B. Cessac.
Pattern formation and criticality in the developing retina, June 2018, International Conference on Mathematical Neuroscience, Poster.
https://hal.archives-ouvertes.fr/hal-01807929 -
25S. Souihel, B. Cessac.
A computational study of anticipation in the retina, September 2018, Bernstein conference 2018, Poster.
https://hal.inria.fr/hal-01942516 -
26S. Souihel, F. Chavane, O. Marre, B. Cessac.
Processing various motion features and measuring RGCs pairwise correlations with a 2D retinal model, June 2018, International Conference on Mathematical Neuroscience ICMNS 2018, Poster.
https://hal.inria.fr/hal-01809589 -
27S. Souihel, F. Chavane, O. Marre, B. Cessac.
Processing various motion features and measuring RGCs pairwise correlations with a 2D retinal model, June 2018, AREADNE 2018 Research in Encoding And Decoding of Neural Ensembles, Poster.
https://hal.inria.fr/hal-01866259
-
28W. I. Al-Atabany, M. A. Memon, S. M. Downes, P. A. Degenaar.
Designing and testing scene enhancement algorithms for patients with retina degenerative disorders., in: Biomedical engineering online, 2010, vol. 9, no 1, 27 p. -
29W. I. Al-Atabany, T. Tong, P. A. Degenaar.
Improved content aware scene retargeting for retinitis pigmentosa patients, in: Biomedical engineering online, 2010, vol. 9, no 1. -
30F. M. Atay, S. Banisch, P. Blanchard, B. Cessac, E. Olbrich.
Perspectives on Multi-Level Dynamics, in: The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity, 2016, vol. 5, pp. 313 - 339. [ DOI : 10.5890/DNC.2016.09.009 ]
https://hal.inria.fr/hal-01387733 -
31M. Auvray, E. Myin.
Perception With Compensatory Devices: From Sensory Substitution to Sensorimotor Extension, in: Cognitive Science, 2009, vol. 33, no 6, pp. 1036–1058.
http://dx.doi.org/10.1111/j.1551-6709.2009.01040.x -
32S. Avidan, A. Shamir.
Seam Carving for Content-aware Image Resizing, in: ACM Trans. Graph., July 2007, vol. 26, no 3.
http://doi.acm.org/10.1145/1276377.1276390 -
33B. Cessac, R. Cofré.
Spike train statistics and Gibbs distributions, in: Journal of Physiology-Paris, November 2013, vol. 107, no 5, pp. 360-368, Special issue: Neural Coding and Natural Image Statistics.
http://hal.inria.fr/hal-00850155 -
34Á. Csapó, G. Wersényi, H. Nagy, T. Stockman.
A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research, in: Journal on Multimodal User Interfaces, 2015, vol. 9, no 4, pp. 275–286.
http://dx.doi.org/10.1007/s12193-015-0182-7 -
35M. Djilas, B. Kolomiets, L. Cadetti, H. Lorach, R. Caplette, S. Ieng, A. Rebsam, J. A. Sahel, R. Benosman, S. Picaud.
Pharmacologically Induced Wave-Like Activity in the Adult Retina, in: ARVO Annual Meeting Abstract, March 2012. -
36S. I. Firth, C.-T. Wang, M. B. Feller.
Retinal waves: mechanisms and function in visual system development, in: Cell Calcium, 2005, vol. 37, no 5, pp. 425 - 432, Calcium in the function of the nervous system: New implications. [ DOI : 10.1016/j.ceca.2005.01.010 ]
http://www.sciencedirect.com/science/article/pii/S0143416005000278 -
37K. J. Ford, M. B. Feller.
Assembly and disassembly of a retinal cholinergic network, in: Visual Neuroscience, 2012, vol. 29, pp. 61–71. [ DOI : 10.1017/S0952523811000216 ]
http://journals.cambridge.org/article_S0952523811000216 -
38B. Froissard.
Assistance visuelle des malvoyants par traitement d'images adaptatif, Université de Saint-Etienne, February 2014. -
39B. Froissard, H. Konik, E. Dinet.
Digital content devices and augmented reality for assisting low vision people, in: Visually Impaired: Assistive Technologies, Challenges and Coping Strategies, Nova Science Publishers, December 2015.
https://hal-ujm.archives-ouvertes.fr/ujm-01222251 -
40E. Ganmor, R. Segev, E. Schneidman.
Sparse low-order interaction network underlies a highly correlated and learnable neural population code, in: PNAS, 2011, vol. 108, no 23, pp. 9679-9684. -
41E. Ganmor, R. Segev, E. Schneidman.
The architecture of functional interaction networks in the retina, in: The journal of neuroscience, 2011, vol. 31, no 8, pp. 3044-3054. -
42E. Jaynes.
Information theory and statistical mechanics, in: Phys. Rev., 1957, vol. 106, 620 p. -
43H. Moshtael, T. Aslam, I. Underwood, B. Dhillon.
High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired, in: Translational vision science & technology (TVST), 2015, vol. 4, no 4. -
44E. Peli, T. Peli.
Image Enhancement For The Visually Impaired, in: Optical Engineering, 1984, vol. 23, no 1.
https://doi.org/10.1117/12.7973251 -
45E. Schneidman, M. Berry, R. Segev, W. Bialek.
Weak pairwise correlations imply strongly correlated network states in a neural population, in: Nature, 2006, vol. 440, no 7087, pp. 1007–1012. -
46E. Sernagor, M. Hennig.
Retinal Waves: Underlying Cellular Mechanisms and Theoretical Considerations, in: Cellular Migration and Formation of Neuronal Connections - Comprehensive Developmental Neuroscience, J. Rubenstein, P. Rakic (editors), Elsevier, 2012. -
47J. Shlens, G. Field, J. Gauthier, M. Grivich, D. Petrusca, A. Sher, A. Litke, E. Chichilnisky.
The Structure of Multi-Neuron Firing Patterns in Primate Retina, in: Journal of Neuroscience, 2006, vol. 26, no 32, 8254 p. -
48G. Tkacik, O. Marre, T. Mora, D. Amodei, M. Berry, W. Bialek.
The simplest maximum entropy model for collective behavior in a neural network, in: J Stat Mech, 2013, P03011 p. -
49J.-C. Vasquez, A. Palacios, O. Marre, M. J. Berry, B. Cessac.
Gibbs distribution analysis of temporal correlations structure in retina ganglion cells, in: J. Physiol. Paris, May 2012, vol. 106, no 3-4, pp. 120-127.
http://arxiv.org/abs/1112.2464 -
50H. Winnemöller, J. E. Kyprianidis, S. C. Olsen.
XDoG: An eXtended difference-of-Gaussians compendium including advanced image stylization, in: Computers & Graphics, October 2012, vol. 36, no 6, pp. 740–753, 2011 Joint Symposium on Computational Aesthetics (CAe), Non-Photorealistic Animation and Rendering (NPAR), and Sketch-Based Interfaces and Modeling (SBIM). [ DOI : doi:10.1016/j.cag.2012.03.004 ] -
51R. O. L. Wong, M. Meister, C. J. Shatz.
Transient Period of Correlated Bursting Activity During Development of the Mammalian Retina, in: Neuron, November 1993, vol. 11, no 5, pp. 923–938. -
52H. Xu, T. Burbridge, M. Ye, X. Ge, Z. Zhou, M. Crair.
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits, in: The Journal of Neuroscience, 2016, vol. 36, no 13, pp. 3871-3886. -
53T. L. I. for Innovation in Vision Science.
Chapter 7- Restoring Vision to the Blind: Advancements in Vision Aids for the Visually Impaired, in: Translational Vision Science & Technology, 2014, vol. 3, no 7, 9 p.
http://dx.doi.org/10.1167/tvst.3.7.9