EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.

    Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]

    https://hal.archives-ouvertes.fr/hal-00776629
  • 2J.-L. Florenciano, P. Bruel.

    LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]

    https://hal.inria.fr/hal-01353952
  • 3E. Franquet, V. Perrier.

    Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, pp. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]

    https://hal.inria.fr/hal-00684427
  • 4C. Friess, R. Manceau, T. Gatski.

    Toward an equivalence criterion for Hybrid RANS/LES methods, in: Computers and Fluids, 2015, vol. 122, pp. 233-246. [ DOI : 10.1016/j.compfluid.2015.08.010 ]
  • 5J.-M. Hérard, J. Jung.

    An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématique, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]

    https://hal.inria.fr/hal-01233251
  • 6R. Manceau.

    Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: Int. J. Heat Fluid Fl., 2015, vol. 51, pp. 195-220.

    http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.09.002
  • 7Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.

    Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]

    https://hal.inria.fr/hal-01096422
Publications of the year

Articles in International Peer-Reviewed Journals

  • 8V. Boutrouche, E. Franquet, S. Serra, R. Manceau.

    Influence of the turbulence model for channel flows with strong transverse temperature gradients, in: International Journal of Heat and Fluid Flow, April 2018, vol. 70, pp. 79-103.

    https://hal.inria.fr/hal-01944199
  • 9P. Bruel, S. Delmas, J. Jung, V. Perrier.

    A low Mach correction able to deal with low Mach acoustics, in: Journal of Computational Physics, February 2019, vol. 378, pp. 723-759. [ DOI : 10.1016/j.jcp.2018.11.020 ]

    https://hal.inria.fr/hal-01953424

Invited Conferences

  • 10R. Manceau.

    Modélisation des transferts thermiques turbulents (conférence plénière), in: 26e congrès français de thermique, Pau, France, May 2018.

    https://hal.inria.fr/hal-01944227
  • 11R. Manceau.

    Progress in Hybrid Temporal LES (plenary lecture), in: 6th Symposium on Hybrid RANS-LES Methods, Strasbourg, France, Progress in Hybrid RANS-LES Modelling. Papers contributed to the 6th Symp. Hybrid RANS-LES Methods, 26-28 September 29016, Strasbourg, France. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, September 2018, vol. 137.

    https://hal.inria.fr/hal-01391899

International Conferences with Proceedings

  • 12A. G. Filippini, S. De Brye, V. Perrier, F. Marche, M. Ricchiuto, D. Lannes, P. Bonneton.

    UHAINA : A parallel high performance unstructured near-shore wave model, in: Journées Nationales Génie Côtier - Génie Civil, La Rochelle, France, Editions Paralia, May 2018. [ DOI : 10.5150/jngcgc.2018.006 ]

    https://hal.inria.fr/hal-01824108
  • 13M. Lorini, C. Dobrzynski, V. Perrier, M. Ricchiuto.

    A Discontinuous Galerkin Immersed Boundary Method Using Unstructured Anisotropic Mesh Adaptation and Penalization Techniques, in: 13th World Congress in Computational Mechanics, New York, United States, July 2018.

    https://hal.inria.fr/hal-01824109
  • 14M. Lorini, C. Dobrzynski, V. Perrier, M. Ricchiuto.

    Preliminary results of a Discontinuous Galerkin immersed boundary method combining penalisation and anisotropic adaptaion, in: 6th European Conference on Computational Mechanics (ECCM 6)/7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, United Kingdom, June 2018.

    https://hal.inria.fr/hal-01824099
  • 15G. Mangeon, S. Benhamadouche, J.-F. Wald, R. Manceau.

    Modelling of the dissipation rate of the temperature variance, in: ETMM12 - 12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Montpellier, France, September 2018.

    https://hal.inria.fr/hal-01944242
  • 16G. Mangeon, S. Benhamadouche, J.-F. Wald, R. Manceau.

    Unifying the near-wall treatment of the turbulent heat fluxes for all kinds of temperature boundary conditions with the Elliptic Blending approach, in: THMT-18 - 9th International Symposium on Turbulence, Heat and Mass Transfer, Rio De Janeiro, Brazil, July 2018.

    https://hal.inria.fr/hal-01944249

Conferences without Proceedings

  • 17A. H. Afailal, J. Galpin, A. Velghe, R. Manceau.

    A Hybrid Temporal RANS-LES Method for internal combustion engine applications, in: Large-Eddy Simulation for Internal Combustion Engines, Rueil-Malmaison, France, December 2018.

    https://hal.inria.fr/hal-01970768
  • 18P. Bruel.

    An efficient pressure-based methodology for low Mach flow simulations, in: CAIA 2018: 5º Congreso Argentino de Ingeniería Aeronáutica, Córdoba, Argentina, November 2018.

    https://hal.archives-ouvertes.fr/hal-01953245
  • 19J. Jung, V. Perrier.

    A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, in: ECCM-ECFD Conferences 2018 - 6th European Conference on Computational Mechanics - 7th European Conference on Computational Fluid Dynamics, Glasgow, United Kingdom, June 2018.

    https://hal.inria.fr/hal-01953376
  • 20V. Perrier, J. Jung.

    A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, in: CANUM 2018 - 44e Congrès National d'Analyse Numérique, Cap d'Agde, France, May 2018, vol. 228, pp. 2525 - 2615.

    https://hal.inria.fr/hal-01960122
  • 21V. Perrier, A. Mazaheri.

    Symmetrizable first order formulation of Navier-Stokes equations and numerical results with the discontinuous Galerkin method, in: 6th European Conference on Computational Mechanics (ECCM 6)/7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, France, June 2018.

    https://hal.inria.fr/hal-01953594

Scientific Popularization

Other Publications

  • 31V. Duffal, B. De Laage De Meux, R. Manceau.

    Hybrid RANS/LES modelling of unsteady turbulent loads in hydraulic pumps, May 2018, Code_Saturne user meeting, Poster.

    https://hal.inria.fr/hal-01944333
  • 32J. Jung.

    A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, May 2018, Séminaire, Groupe de travail de l’ENS Rennes, Rennes, France.

    https://hal.inria.fr/hal-01953411
  • 33G. Mangeon, S. Benhamadouche, R. Manceau, J.-F. Wald.

    Modeling of the dissipation rate of the temperature variance, May 2018, Code_Saturne user meeting, Poster.

    https://hal.inria.fr/hal-01944358
References in notes
  • 34D. N. Arnold.

    An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760.
  • 35D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.

    Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779.
  • 36C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier.

    StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures, in: Concurr. Comput. : Pract. Exper., February 2011, vol. 23, no 2, pp. 187–198.

    http://dx.doi.org/10.1002/cpe.1631
  • 37F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.

    On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]

    http://www.sciencedirect.com/science/article/pii/S0021999111005055
  • 38F. Bassi, A. Crivellini, S. Rebay, M. Savini.

    Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
  • 39F. Bassi, S. Rebay.

    A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.

    http://dx.doi.org/10.1006/jcph.1996.5572
  • 40F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.

    A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109.
  • 41B. Cockburn, S. Hou, C.-W. Shu.

    The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.

    http://dx.doi.org/10.2307/2008501
  • 42B. Cockburn, S. Y. Lin, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
  • 43B. Cockburn, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.

    http://dx.doi.org/10.2307/2008474
  • 44B. Cockburn, C.-W. Shu.

    The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
  • 45B. Cockburn, C.-W. Shu.

    The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.

    http://dx.doi.org/10.1006/jcph.1998.5892
  • 46S. S. Colis.

    Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
  • 47M. Essadki, J. Jung, A. Larat, M. Pelletier, V. Perrier.

    A task-driven implementation of a simple numerical solver for hyperbolic conservation laws, in: ESAIM: Proceedings and Surveys, January 2017, vol. 63, pp. 228-247. [ DOI : 10.1051/proc/201863228 ]

    https://hal.archives-ouvertes.fr/hal-01439322
  • 48M. Feistauer, V. Kučera.

    On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.

    http://dx.doi.org/10.1016/j.jcp.2007.01.035
  • 49U. Frisch.

    Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995.
  • 50M. Giles.

    Non-Reflecting Boundary Conditions for Euler Equation Calculation, in: The American Institute of Aeronautics and Astronautics Journal, 1990, vol. 42, no 12.
  • 51R. Hartmann, P. Houston.

    Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
  • 52A. Jameson, M. Fatica.

    Using Computational Fluid Dynamics for Aerodynamics, in: National Research Council Workshop on "The Future of Supercomputing", 2003.
  • 53C. Johnson, A. Szepessy, P. Hansbo.

    On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.

    http://dx.doi.org/10.2307/2008684
  • 54A. Klöckner, T. Warburton, J. Bridge, J. Hesthaven.

    Nodal discontinuous Galerkin methods on graphics processors, in: Journal of Computational Physics, 2009, vol. 228, no 21, pp. 7863 - 7882. [ DOI : 10.1016/j.jcp.2009.06.041 ]

    http://www.sciencedirect.com/science/article/pii/S0021999109003647
  • 55D. Knoll, D. Keyes.

    Jacobian-free Newton-Krylov methods: a survey of approaches and applications, in: Journal of Computational Physics, 2004, vol. 193, no 2, pp. 357 - 397. [ DOI : 10.1016/j.jcp.2003.08.010 ]

    http://www.sciencedirect.com/science/article/pii/S0021999103004340
  • 56P. Lesaint, P.-A. Raviart.

    On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33.
  • 57F. Lörcher, G. Gassner, C.-D. Munz.

    An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.

    http://dx.doi.org/10.1016/j.jcp.2008.02.015
  • 58A. C. Muresan, Y. Notay.

    Analysis of Aggregation-Based Multigrid, in: SIAM J. Sci. Comput., March 2008, vol. 30, no 2, pp. 1082–1103.

    http://dx.doi.org/10.1137/060678397
  • 59T. Poinsot, S. Lele.

    Boundary conditions for direct simulations of compressible viscous flows, in: Journal of Computational Physics, 1992, vol. 101, pp. 104-129.
  • 60W. Reed, T. Hill.

    Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
  • 61H. Sutter.

    The free lunch is over: A fundamental turn toward concurrency in software, in: Dr. Dobb's Journal, 2005.
  • 62K. W. Thompson.

    Time-dependent boundary conditions for hyperbolic systems, {II}, in: Journal of Computational Physics, 1990, vol. 89, no 2, pp. 439 - 461. [ DOI : 10.1016/0021-9991(90)90152-Q ]

    http://www.sciencedirect.com/science/article/pii/002199919090152Q
  • 63I. Toulopoulos, J. A. Ekaterinaris.

    Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method, in: Journal of Computational Physics, 2011, vol. 230, no 15, pp. 5974 - 5995. [ DOI : 10.1016/j.jcp.2011.04.008 ]

    http://www.sciencedirect.com/science/article/pii/S0021999111002324
  • 64P. Wesseling.

    An introduction to multigrid methods, Pure and applied mathematics, J. Wiley, Chichester, New York, 1992.

    http://opac.inria.fr/record=b1088946
  • 65I. Yavneh.

    Why Multigrid Methods Are So Efficient, in: Computing in Science and Engg., November 2006, vol. 8, no 6, pp. 12–22.

    http://dx.doi.org/10.1109/MCSE.2006.125
  • 66J. van der Vegt, S. Rhebergen.

    hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, in: Journal of Computational Physics, 2012, vol. 231, no 22, pp. 7537 - 7563. [ DOI : 10.1016/j.jcp.2012.05.038 ]

    http://www.sciencedirect.com/science/article/pii/S0021999112003129