Bibliography
Major publications by the team in recent years
-
1S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.
Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]
https://hal.archives-ouvertes.fr/hal-00776629 -
2J.-L. Florenciano, P. Bruel.
LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]
https://hal.inria.fr/hal-01353952 -
3E. Franquet, V. Perrier.
Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, pp. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]
https://hal.inria.fr/hal-00684427 -
4C. Friess, R. Manceau, T. Gatski.
Toward an equivalence criterion for Hybrid RANS/LES methods, in: Computers and Fluids, 2015, vol. 122, pp. 233-246. [ DOI : 10.1016/j.compfluid.2015.08.010 ] -
5J.-M. Hérard, J. Jung.
An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématique, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]
https://hal.inria.fr/hal-01233251 -
6R. Manceau.
Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: Int. J. Heat Fluid Fl., 2015, vol. 51, pp. 195-220.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.09.002 -
7Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.
Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]
https://hal.inria.fr/hal-01096422
Articles in International Peer-Reviewed Journals
-
8V. Boutrouche, E. Franquet, S. Serra, R. Manceau.
Influence of the turbulence model for channel flows with strong transverse temperature gradients, in: International Journal of Heat and Fluid Flow, April 2018, vol. 70, pp. 79-103.
https://hal.inria.fr/hal-01944199 -
9P. Bruel, S. Delmas, J. Jung, V. Perrier.
A low Mach correction able to deal with low Mach acoustics, in: Journal of Computational Physics, February 2019, vol. 378, pp. 723-759. [ DOI : 10.1016/j.jcp.2018.11.020 ]
https://hal.inria.fr/hal-01953424
Invited Conferences
-
10R. Manceau.
Modélisation des transferts thermiques turbulents (conférence plénière), in: 26e congrès français de thermique, Pau, France, May 2018.
https://hal.inria.fr/hal-01944227 -
11R. Manceau.
Progress in Hybrid Temporal LES (plenary lecture), in: 6th Symposium on Hybrid RANS-LES Methods, Strasbourg, France, Progress in Hybrid RANS-LES Modelling. Papers contributed to the 6th Symp. Hybrid RANS-LES Methods, 26-28 September 29016, Strasbourg, France. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, September 2018, vol. 137.
https://hal.inria.fr/hal-01391899
International Conferences with Proceedings
-
12A. G. Filippini, S. De Brye, V. Perrier, F. Marche, M. Ricchiuto, D. Lannes, P. Bonneton.
UHAINA : A parallel high performance unstructured near-shore wave model, in: Journées Nationales Génie Côtier - Génie Civil, La Rochelle, France, Editions Paralia, May 2018. [ DOI : 10.5150/jngcgc.2018.006 ]
https://hal.inria.fr/hal-01824108 -
13M. Lorini, C. Dobrzynski, V. Perrier, M. Ricchiuto.
A Discontinuous Galerkin Immersed Boundary Method Using Unstructured Anisotropic Mesh Adaptation and Penalization Techniques, in: 13th World Congress in Computational Mechanics, New York, United States, July 2018.
https://hal.inria.fr/hal-01824109 -
14M. Lorini, C. Dobrzynski, V. Perrier, M. Ricchiuto.
Preliminary results of a Discontinuous Galerkin immersed boundary method combining penalisation and anisotropic adaptaion, in: 6th European Conference on Computational Mechanics (ECCM 6)/7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, United Kingdom, June 2018.
https://hal.inria.fr/hal-01824099 -
15G. Mangeon, S. Benhamadouche, J.-F. Wald, R. Manceau.
Modelling of the dissipation rate of the temperature variance, in: ETMM12 - 12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Montpellier, France, September 2018.
https://hal.inria.fr/hal-01944242 -
16G. Mangeon, S. Benhamadouche, J.-F. Wald, R. Manceau.
Unifying the near-wall treatment of the turbulent heat fluxes for all kinds of temperature boundary conditions with the Elliptic Blending approach, in: THMT-18 - 9th International Symposium on Turbulence, Heat and Mass Transfer, Rio De Janeiro, Brazil, July 2018.
https://hal.inria.fr/hal-01944249
Conferences without Proceedings
-
17A. H. Afailal, J. Galpin, A. Velghe, R. Manceau.
A Hybrid Temporal RANS-LES Method for internal combustion engine applications, in: Large-Eddy Simulation for Internal Combustion Engines, Rueil-Malmaison, France, December 2018.
https://hal.inria.fr/hal-01970768 -
18P. Bruel.
An efficient pressure-based methodology for low Mach flow simulations, in: CAIA 2018: 5º Congreso Argentino de Ingeniería Aeronáutica, Córdoba, Argentina, November 2018.
https://hal.archives-ouvertes.fr/hal-01953245 -
19J. Jung, V. Perrier.
A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, in: ECCM-ECFD Conferences 2018 - 6th European Conference on Computational Mechanics - 7th European Conference on Computational Fluid Dynamics, Glasgow, United Kingdom, June 2018.
https://hal.inria.fr/hal-01953376 -
20V. Perrier, J. Jung.
A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, in: CANUM 2018 - 44e Congrès National d'Analyse Numérique, Cap d'Agde, France, May 2018, vol. 228, pp. 2525 - 2615.
https://hal.inria.fr/hal-01960122 -
21V. Perrier, A. Mazaheri.
Symmetrizable first order formulation of Navier-Stokes equations and numerical results with the discontinuous Galerkin method, in: 6th European Conference on Computational Mechanics (ECCM 6)/7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, France, June 2018.
https://hal.inria.fr/hal-01953594
Scientific Popularization
-
22P. Bruel.
Transition énergétique: d'où partons-nous ?, May 2018, Opération "Savoir en partage" avec Lacq Odyssée. Lycée du Pays de Soule. Chéraute. France.
https://hal.archives-ouvertes.fr/hal-01953296 -
23P. Bruel.
Transition énergétique: d'où partons-nous ?, May 2018, Café des Sciences. Médiathèque de Cambo les Bains. France.
https://hal.archives-ouvertes.fr/hal-01953284 -
24J. Jung, V. Perrier.
Le calcul à haute performance : aujourd’hui: enjeux et applications, May 2018, Savoir en partage, Lycée Louis Barthou.
https://hal.inria.fr/hal-01960160 -
25J. Jung, V. Perrier.
Le calcul à haute performance : aujourd’hui: enjeux et applications, June 2018, Café des Sciences, Médiathèque des Gaves, Oloron Sainte-Marie.
https://hal.inria.fr/hal-01960216 -
26J. Jung, V. Perrier.
Le calcul à haute performance : aujourd’hui: enjeux et applications, November 2018, Recherche et Innovations, UPPA, Pau.
https://hal.inria.fr/hal-01953396 -
27J. Jung, V. Perrier.
Le calcul à haute performance aujourd’hui : enjeux et applications, May 2018, Savoir en partage, Collège de Salies-de-Béarn, France.
https://hal.inria.fr/hal-01953388 -
28R. Manceau.
La simulation numérique en physique, May 2018, Savoir en partage, Lycée Albert Camus, Mourenx, France.
https://hal.inria.fr/hal-01944279 -
29R. Manceau.
Le numérique en physique, June 2018, Café des sciences, collège du Vic-Bilh, Lembeye, France.
https://hal.inria.fr/hal-01944266 -
30R. Manceau.
Le numérique en physique, June 2018, Café des sciences, médiathèque de Billère, France.
https://hal.inria.fr/hal-01944273
Other Publications
-
31V. Duffal, B. De Laage De Meux, R. Manceau.
Hybrid RANS/LES modelling of unsteady turbulent loads in hydraulic pumps, May 2018, Code_Saturne user meeting, Poster.
https://hal.inria.fr/hal-01944333 -
32J. Jung.
A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, May 2018, Séminaire, Groupe de travail de l’ENS Rennes, Rennes, France.
https://hal.inria.fr/hal-01953411 -
33G. Mangeon, S. Benhamadouche, R. Manceau, J.-F. Wald.
Modeling of the dissipation rate of the temperature variance, May 2018, Code_Saturne user meeting, Poster.
https://hal.inria.fr/hal-01944358
-
34D. N. Arnold.
An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760. -
35D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.
Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779. -
36C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures, in: Concurr. Comput. : Pract. Exper., February 2011, vol. 23, no 2, pp. 187–198.
http://dx.doi.org/10.1002/cpe.1631 -
37F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.
On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]
http://www.sciencedirect.com/science/article/pii/S0021999111005055 -
38F. Bassi, A. Crivellini, S. Rebay, M. Savini.
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540. -
39F. Bassi, S. Rebay.
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.
http://dx.doi.org/10.1006/jcph.1996.5572 -
40F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.
A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109. -
41B. Cockburn, S. Hou, C.-W. Shu.
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.
http://dx.doi.org/10.2307/2008501 -
42B. Cockburn, S. Y. Lin, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113. -
43B. Cockburn, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.
http://dx.doi.org/10.2307/2008474 -
44B. Cockburn, C.-W. Shu.
The Runge-Kutta local projection -discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361. -
45B. Cockburn, C.-W. Shu.
The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.
http://dx.doi.org/10.1006/jcph.1998.5892 -
46S. S. Colis.
Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002. -
47M. Essadki, J. Jung, A. Larat, M. Pelletier, V. Perrier.
A task-driven implementation of a simple numerical solver for hyperbolic conservation laws, in: ESAIM: Proceedings and Surveys, January 2017, vol. 63, pp. 228-247. [ DOI : 10.1051/proc/201863228 ]
https://hal.archives-ouvertes.fr/hal-01439322 -
48M. Feistauer, V. Kučera.
On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.
http://dx.doi.org/10.1016/j.jcp.2007.01.035 -
49U. Frisch.
Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995. -
50M. Giles.
Non-Reflecting Boundary Conditions for Euler Equation Calculation, in: The American Institute of Aeronautics and Astronautics Journal, 1990, vol. 42, no 12. -
51R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20. -
52A. Jameson, M. Fatica.
Using Computational Fluid Dynamics for Aerodynamics, in: National Research Council Workshop on "The Future of Supercomputing", 2003. -
53C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.
http://dx.doi.org/10.2307/2008684 -
54A. Klöckner, T. Warburton, J. Bridge, J. Hesthaven.
Nodal discontinuous Galerkin methods on graphics processors, in: Journal of Computational Physics, 2009, vol. 228, no 21, pp. 7863 - 7882. [ DOI : 10.1016/j.jcp.2009.06.041 ]
http://www.sciencedirect.com/science/article/pii/S0021999109003647 -
55D. Knoll, D. Keyes.
Jacobian-free Newton-Krylov methods: a survey of approaches and applications, in: Journal of Computational Physics, 2004, vol. 193, no 2, pp. 357 - 397. [ DOI : 10.1016/j.jcp.2003.08.010 ]
http://www.sciencedirect.com/science/article/pii/S0021999103004340 -
56P. Lesaint, P.-A. Raviart.
On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33. -
57F. Lörcher, G. Gassner, C.-D. Munz.
An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.
http://dx.doi.org/10.1016/j.jcp.2008.02.015 -
58A. C. Muresan, Y. Notay.
Analysis of Aggregation-Based Multigrid, in: SIAM J. Sci. Comput., March 2008, vol. 30, no 2, pp. 1082–1103.
http://dx.doi.org/10.1137/060678397 -
59T. Poinsot, S. Lele.
Boundary conditions for direct simulations of compressible viscous flows, in: Journal of Computational Physics, 1992, vol. 101, pp. 104-129. -
60W. Reed, T. Hill.
Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479. -
61H. Sutter.
The free lunch is over: A fundamental turn toward concurrency in software, in: Dr. Dobb's Journal, 2005. -
62K. W. Thompson.
Time-dependent boundary conditions for hyperbolic systems, {II}, in: Journal of Computational Physics, 1990, vol. 89, no 2, pp. 439 - 461. [ DOI : 10.1016/0021-9991(90)90152-Q ]
http://www.sciencedirect.com/science/article/pii/002199919090152Q -
63I. Toulopoulos, J. A. Ekaterinaris.
Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method, in: Journal of Computational Physics, 2011, vol. 230, no 15, pp. 5974 - 5995. [ DOI : 10.1016/j.jcp.2011.04.008 ]
http://www.sciencedirect.com/science/article/pii/S0021999111002324 -
64P. Wesseling.
An introduction to multigrid methods, Pure and applied mathematics, J. Wiley, Chichester, New York, 1992.
http://opac.inria.fr/record=b1088946 -
65I. Yavneh.
Why Multigrid Methods Are So Efficient, in: Computing in Science and Engg., November 2006, vol. 8, no 6, pp. 12–22.
http://dx.doi.org/10.1109/MCSE.2006.125 -
66J. van der Vegt, S. Rhebergen.
hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, in: Journal of Computational Physics, 2012, vol. 231, no 22, pp. 7537 - 7563. [ DOI : 10.1016/j.jcp.2012.05.038 ]
http://www.sciencedirect.com/science/article/pii/S0021999112003129