Section: Research Program
Vibration analysis
In this section, the main features for the key monitoring issues, namely identification, detection, and diagnostics, are provided, and a particular instantiation relevant for vibration monitoring is described.
It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if not generic. Handling high order linear dynamical systems, in connection with finite elements models, which call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature of model-based sensor information data processing as exercised in I4S, is the combined use of black-box or semi-physical models together with physical ones. Black-box and semi-physical models are, for example, eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be considered, the issue of model order selection is really a challenge. Traditional advanced techniques from statistics such as the various forms of Akaike criteria (AIC, BIC, MDL, ...) do not work at all. This gives rise to new research activities specific to handling high order models.
Our approach to monitoring assumes that a model of the monitored system is available.
This is a reasonable assumption, especially within the SHM areas.
The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect
to a reference (safe) behavior under usual operating
conditions, namely without any artificial excitation or other external action.
Such a normal behavior is summarized in a reference parameter vector
Identification
The behavior of the monitored continuous system is assumed to be described by
a parametric model
For reasons closely related to the vibrations monitoring applications,
we have been investigating subspace-based methods, for both the identification
and the monitoring of the eigenstructure
namely the
The (canonical) parameter vector in that case is :
where
Subspace-based methods is the generic name for linear systems identification algorithms based on either time domain measurements or output covariance matrices, in which different subspaces of Gaussian random vectors play a key role [57].
Let
be the output covariance and Hankel matrices, respectively; and:
where:
are the observability and controllability matrices, respectively.
The observation matrix
Since the actual model order is generally not known, this procedure is run with increasing model orders.
Detection
Our approach to on-board detection is based on the so-called asymptotic statistical local approach. It is worth noticing that these investigations of ours have been initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite to many monitoring approaches, our method does not require repeated identification for each newly collected data sample.
For achieving the early detection of small deviations with respect to the normal behavior,
our approach generates, on the basis of the reference parameter vector
-
The early detection of a slight mismatch between the model and the data;
-
A preliminary diagnostics and localization of the deviation(s);
-
The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the estimation error in the reference model and the measurement noise level.
These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some applications, such as flutter monitoring.
Choosing the eigenvectors of matrix
where
This property can be checked as follows. From the nominal
Matrix
Residual associated with subspace identification.
Assume now that a reference
and to define the residual vector:
Let
As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero under normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity to small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our approach is to :
-
Design the residual basically as a parameter estimating function,
-
Evaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptotically Gaussian and reflects the presence of a deviation in the parameter vector through a change in its own mean vector, which switches from zero in the reference situation to a non-zero value.
The central limit theorem shows [51] that the residual is asymptotically Gaussian :
where the asymptotic covariance matrix
where
Diagnostics
A further monitoring step, often called fault isolation,
consists in determining which (subsets of) components
of the parameter vector
The question: which (subsets of) components of
In most SHM applications, a complex physical system, characterized by a generally
non identifiable parameter vector
The isolation methods sketched above are possible solutions to the former. Our approach to the latter diagnosis problem is basically a detection approach again, and not a (generally ill-posed) inverse problem estimation approach.
The basic idea is to note that the physical sensitivity matrix writes
It should be clear that the selection of a particular parameterization