EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1Y. Akimoto, A. Auger, N. Hansen.

    Quality Gain Analysis of the Weighted Recombination Evolution Strategy on General Convex Quadratic Functions, in: Theoretical Computer Science, 2018. [ DOI : 10.1016/j.tcs.2018.05.015 ]

    https://hal.inria.fr/hal-01662568
  • 2A. Atamna, A. Auger, N. Hansen.

    On Invariance and Linear Convergence of Evolution Strategies with Augmented Lagrangian Constraint Handling, in: Theoretical Computer Science, November 2018.

    https://hal.inria.fr/hal-01660728

Invited Conferences

International Conferences with Proceedings

  • 4Y. Akimoto, A. Auger, T. Glasmachers.

    Drift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule, in: Proceedings of the GECCO 2018 Conference, Kyoto, Japan, 2018, https://arxiv.org/abs/1802.03209.

    https://hal.inria.fr/hal-01778116
  • 5A. Blelly, M. Felipe-Gomes, A. Auger, D. Brockhoff.

    Stopping Criteria, Initialization, and Implementations of BFGS and their Effect on the BBOB Test Suite, in: GECCO '18 Companion, Kyoto, Japan, July 2018. [ DOI : 10.1145/3205651.3208303 ]

    https://hal.inria.fr/hal-01811588
  • 6K. Varelas, A. Auger, D. Brockhoff, N. Hansen, O. A. Elhara, Y. Semet, R. Kassab, F. Barbaresco.

    A Comparative Study of Large-scale Variants of CMA-ES, in: PPSN XV 2018 - 15th International Conference on Parallel Problem Solving from Nature, Coimbra, Portugal, LNCS, September 2018, vol. 11101, pp. 3-15. [ DOI : 10.1007/978-3-319-99253-2_1 ]

    https://hal.inria.fr/hal-01881454

Other Publications

References in notes
  • 12Y. Akimoto, N. Hansen.

    Online model selection for restricted covariance matrix adaptation, in: International Conference on Parallel Problem Solving from Nature, Springer, 2016, pp. 3–13.
  • 13Y. Akimoto, N. Hansen.

    Projection-based restricted covariance matrix adaptation for high dimension, in: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, ACM, 2016, pp. 197–204.
  • 14D. V. Arnold, J. Porter.

    Towards au Augmented Lagrangian Constraint Handling Approach for the (1+1)-ES, in: Genetic and Evolutionary Computation Conference, ACM Press, 2015, pp. 249-256.
  • 15A. Atamna, A. Auger, N. Hansen.

    Linearly Convergent Evolution Strategies via Augmented Lagrangian Constraint Handling, in: Foundation of Genetic Algorithms (FOGA), 2017.
  • 16A. Auger, N. Hansen.

    Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains, in: SIAM Journal on Optimization, 2016, vol. 26, no 3, pp. 1589-1624.
  • 17J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl.

    Algorithms for Hyper-Parameter Optimization, in: Neural Information Processing Systems (NIPS 2011), 2011.

    https://hal.inria.fr/hal-00642998/file/draft1.pdf
  • 18J. Bergstra, Y. Bengio.

    Random search for hyper-parameter optimization, in: Journal of Machine Learning Research, 2012, vol. 13, pp. 281–305.
  • 19V. S. Borkar.

    Stochastic approximation: a dynamical systems viewpoint, 2008, Cambridge University Press.
  • 20V. Borkar, S. Meyn.

    The O.D.E. Method for Convergence of Stochastic Approximation and Reinforcement Learning, in: SIAM Journal on Control and Optimization, January 2000, vol. 38, no 2.
  • 21C. A. Coello Coello.

    Constraint-handling techniques used with evolutionary algorithms, in: Proceedings of the 2008 Genetic and Evolutionary Computation Conference, ACM, 2008, pp. 2445–2466.
  • 22G. Collange, S. Reynaud, N. Hansen.

    Covariance Matrix Adaptation Evolution Strategy for Multidisciplinary Optimization of Expendable Launcher Families, in: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Proceedings, 2010.
  • 23J. E. Dennis, R. B. Schnabel.

    Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
  • 24N. Hansen, A. Auger.

    Principled design of continuous stochastic search: From theory to practice, in: Theory and principled methods for the design of metaheuristics, Springer, 2014, pp. 145–180.
  • 25N. Hansen, A. Ostermeier.

    Completely Derandomized Self-Adaptation in Evolution Strategies, in: Evolutionary Computation, 2001, vol. 9, no 2, pp. 159–195.
  • 26J. N. Hooker.

    Testing heuristics: We have it all wrong, in: Journal of heuristics, 1995, vol. 1, no 1, pp. 33–42.
  • 27F. Hutter, H. Hoos, K. Leyton-Brown.

    An Evaluation of Sequential Model-based Optimization for Expensive Blackbox Functions, in: GECCO (Companion) 2013, ACM, 2013, pp. 1209–1216.
  • 28D. S. Johnson.

    A theoretician’s guide to the experimental analysis of algorithms, in: Data structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges, 2002, vol. 59, pp. 215–250.
  • 29D. R. Jones, M. Schonlau, W. J. Welch.

    Efficient global optimization of expensive black-box functions, in: Journal of Global optimization, 1998, vol. 13, no 4, pp. 455–492.
  • 30I. Kriest, V. Sauerland, S. Khatiwala, A. Srivastav, A. Oschlies.

    Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0), in: Geoscientific Model Development, 2017, vol. 10, no 1, 127 p.
  • 31H. J. Kushner, G. Yin.

    Stochastic approximation and recursive algorithms and applications, Applications of mathematics, Springer, New York, 2003.

    http://opac.inria.fr/record=b1099801
  • 32I. Loshchilov, F. Hutter.

    CMA-ES for hyperparameter optimization of deep neural networks, in: arXiv preprint arXiv:1604.07269, 2016.
  • 33P. MacAlpine, S. Barrett, D. Urieli, V. Vu, P. Stone.

    Design and Optimization of an Omnidirectional Humanoid Walk: A Winning Approach at the RoboCup 2011 3D Simulation Competition, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI), July 2012.
  • 34S. Meyn, R. Tweedie.

    Markov Chains and Stochastic Stability, Springer-Verlag, New York, 1993.
  • 35Y. Ollivier, L. Arnold, A. Auger, N. Hansen.

    Information-geometric optimization algorithms: A unifying picture via invariance principles, in: Journal Of Machine Learning Research, 2016, accepted.
  • 36T. Salimans, J. Ho, X. Chen, I. Sutskever.

    Evolution strategies as a scalable alternative to reinforcement learning, in: arXiv preprint arXiv:1703.03864, 2017.
  • 37J. Snoek, H. Larochelle, R. P. Adams.

    Practical bayesian optimization of machine learning algorithms, in: Neural Information Processing Systems (NIPS 2012), 2012, pp. 2951–2959.
  • 38J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt, P. Hersen.

    Long-term model predictive control of gene expression at the population and single-cell levels, in: Proceedings of the National Academy of Sciences, 2012, vol. 109, no 35, pp. 14271–14276.