Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1Y. Akimoto, A. Auger, N. Hansen.
Quality Gain Analysis of the Weighted Recombination Evolution Strategy on General Convex Quadratic Functions, in: Theoretical Computer Science, 2018. [ DOI : 10.1016/j.tcs.2018.05.015 ]
https://hal.inria.fr/hal-01662568 -
2A. Atamna, A. Auger, N. Hansen.
On Invariance and Linear Convergence of Evolution Strategies with Augmented Lagrangian Constraint Handling, in: Theoretical Computer Science, November 2018.
https://hal.inria.fr/hal-01660728
Invited Conferences
-
3C. Touré, A. Auger, D. Brockhoff, N. Hansen.
On Bi-Objective convex-quadratic problems, in: 10th International Conference on Evolutionary Multi-Criterion Optimization, East Lansing, Michigan, United States, March 2019, https://arxiv.org/abs/1812.00289.
https://hal.inria.fr/hal-01942159
International Conferences with Proceedings
-
4Y. Akimoto, A. Auger, T. Glasmachers.
Drift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule, in: Proceedings of the GECCO 2018 Conference, Kyoto, Japan, 2018, https://arxiv.org/abs/1802.03209.
https://hal.inria.fr/hal-01778116 -
5A. Blelly, M. Felipe-Gomes, A. Auger, D. Brockhoff.
Stopping Criteria, Initialization, and Implementations of BFGS and their Effect on the BBOB Test Suite, in: GECCO '18 Companion, Kyoto, Japan, July 2018. [ DOI : 10.1145/3205651.3208303 ]
https://hal.inria.fr/hal-01811588 -
6K. Varelas, A. Auger, D. Brockhoff, N. Hansen, O. A. Elhara, Y. Semet, R. Kassab, F. Barbaresco.
A Comparative Study of Large-scale Variants of CMA-ES, in: PPSN XV 2018 - 15th International Conference on Parallel Problem Solving from Nature, Coimbra, Portugal, LNCS, September 2018, vol. 11101, pp. 3-15. [ DOI : 10.1007/978-3-319-99253-2_1 ]
https://hal.inria.fr/hal-01881454
Other Publications
-
7Y. Akimoto, A. Auger, N. Hansen.
An ODE Method to Prove the Geometric Convergence of Adaptive Stochastic Algorithms, November 2018, https://arxiv.org/abs/1811.06703 - working paper or preprint.
https://hal.inria.fr/hal-01926472 -
8Y. Akimoto, N. Hansen.
CMA-ES and Advanced Adaptation Mechanisms, July 2018, GECCO '18 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion.
https://hal.inria.fr/hal-01959479 -
9D. Brockhoff.
GECCO 2018 tutorial on evolutionary multiobjective optimization, July 2018, GECCO '18 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion.
https://hal.inria.fr/hal-01943586 -
10D. Brockhoff, T. Tusar, A. Auger, N. Hansen.
Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites, January 2019, https://arxiv.org/abs/1604.00359 - ArXiv e-prints, arXiv:1604.00359.
https://hal.inria.fr/hal-01296987 -
11N. Hansen.
A Practical Guide to Experimentation (and Benchmarking), July 2018, GECCO '18 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion.
https://hal.inria.fr/hal-01959453
-
12Y. Akimoto, N. Hansen.
Online model selection for restricted covariance matrix adaptation, in: International Conference on Parallel Problem Solving from Nature, Springer, 2016, pp. 3–13. -
13Y. Akimoto, N. Hansen.
Projection-based restricted covariance matrix adaptation for high dimension, in: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, ACM, 2016, pp. 197–204. -
14D. V. Arnold, J. Porter.
Towards au Augmented Lagrangian Constraint Handling Approach for the -ES, in: Genetic and Evolutionary Computation Conference, ACM Press, 2015, pp. 249-256. -
15A. Atamna, A. Auger, N. Hansen.
Linearly Convergent Evolution Strategies via Augmented Lagrangian Constraint Handling, in: Foundation of Genetic Algorithms (FOGA), 2017. -
16A. Auger, N. Hansen.
Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains, in: SIAM Journal on Optimization, 2016, vol. 26, no 3, pp. 1589-1624. -
17J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl.
Algorithms for Hyper-Parameter Optimization, in: Neural Information Processing Systems (NIPS 2011), 2011.
https://hal.inria.fr/hal-00642998/file/draft1.pdf -
18J. Bergstra, Y. Bengio.
Random search for hyper-parameter optimization, in: Journal of Machine Learning Research, 2012, vol. 13, pp. 281–305. -
19V. S. Borkar.
Stochastic approximation: a dynamical systems viewpoint, 2008, Cambridge University Press. -
20V. Borkar, S. Meyn.
The O.D.E. Method for Convergence of Stochastic Approximation and Reinforcement Learning, in: SIAM Journal on Control and Optimization, January 2000, vol. 38, no 2. -
21C. A. Coello Coello.
Constraint-handling techniques used with evolutionary algorithms, in: Proceedings of the 2008 Genetic and Evolutionary Computation Conference, ACM, 2008, pp. 2445–2466. -
22G. Collange, S. Reynaud, N. Hansen.
Covariance Matrix Adaptation Evolution Strategy for Multidisciplinary Optimization of Expendable Launcher Families, in: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Proceedings, 2010. -
23J. E. Dennis, R. B. Schnabel.
Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983. -
24N. Hansen, A. Auger.
Principled design of continuous stochastic search: From theory to practice, in: Theory and principled methods for the design of metaheuristics, Springer, 2014, pp. 145–180. -
25N. Hansen, A. Ostermeier.
Completely Derandomized Self-Adaptation in Evolution Strategies, in: Evolutionary Computation, 2001, vol. 9, no 2, pp. 159–195. -
26J. N. Hooker.
Testing heuristics: We have it all wrong, in: Journal of heuristics, 1995, vol. 1, no 1, pp. 33–42. -
27F. Hutter, H. Hoos, K. Leyton-Brown.
An Evaluation of Sequential Model-based Optimization for Expensive Blackbox Functions, in: GECCO (Companion) 2013, ACM, 2013, pp. 1209–1216. -
28D. S. Johnson.
A theoretician’s guide to the experimental analysis of algorithms, in: Data structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges, 2002, vol. 59, pp. 215–250. -
29D. R. Jones, M. Schonlau, W. J. Welch.
Efficient global optimization of expensive black-box functions, in: Journal of Global optimization, 1998, vol. 13, no 4, pp. 455–492. -
30I. Kriest, V. Sauerland, S. Khatiwala, A. Srivastav, A. Oschlies.
Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0), in: Geoscientific Model Development, 2017, vol. 10, no 1, 127 p. -
31H. J. Kushner, G. Yin.
Stochastic approximation and recursive algorithms and applications, Applications of mathematics, Springer, New York, 2003.
http://opac.inria.fr/record=b1099801 -
32I. Loshchilov, F. Hutter.
CMA-ES for hyperparameter optimization of deep neural networks, in: arXiv preprint arXiv:1604.07269, 2016. -
33P. MacAlpine, S. Barrett, D. Urieli, V. Vu, P. Stone.
Design and Optimization of an Omnidirectional Humanoid Walk: A Winning Approach at the RoboCup 2011 3D Simulation Competition, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI), July 2012. -
34S. Meyn, R. Tweedie.
Markov Chains and Stochastic Stability, Springer-Verlag, New York, 1993. -
35Y. Ollivier, L. Arnold, A. Auger, N. Hansen.
Information-geometric optimization algorithms: A unifying picture via invariance principles, in: Journal Of Machine Learning Research, 2016, accepted. -
36T. Salimans, J. Ho, X. Chen, I. Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning, in: arXiv preprint arXiv:1703.03864, 2017. -
37J. Snoek, H. Larochelle, R. P. Adams.
Practical bayesian optimization of machine learning algorithms, in: Neural Information Processing Systems (NIPS 2012), 2012, pp. 2951–2959. -
38J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt, P. Hersen.
Long-term model predictive control of gene expression at the population and single-cell levels, in: Proceedings of the National Academy of Sciences, 2012, vol. 109, no 35, pp. 14271–14276.