Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1J. Amalberti, X. Antoine, P. Burnard.
Timescale monitoring of vesuvian eruption using numerical modeling of the diffusion equation, in: Mathematical Geosciences, 2018, vol. 50, no 4, pp. 417-429. [ DOI : 10.1007/s11004-018-9732-3 ]
https://hal.archives-ouvertes.fr/hal-01929057 -
2S. Ammar, J.-C. Vivalda, M. Massaoud.
Genericity of the strong observability for sampled, in: SIAM Journal on Control and Optimization, 2018, vol. 56, no 2, 28 p. [ DOI : 10.1137/16M1084961 ]
https://hal.inria.fr/hal-01630461 -
3X. Antoine, F. Hou, E. Lorin.
Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2018, vol. 52, no 4, pp. 1569-1596. [ DOI : 10.1051/m2an/2017048 ]
https://hal.archives-ouvertes.fr/hal-01431866 -
4X. Antoine, E. Lorin.
Multilevel preconditioning techniques for Schwarz waveform relaxation domain decomposition methods for real-and imaginary-time nonlinear Schrödinger equations, in: Applied Mathematics and Computation, 2018, vol. 336, no 1, pp. 403-417.
https://hal.archives-ouvertes.fr/hal-01266021 -
5X. Antoine, Q. Tang, J. Zhang.
On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations, in: International Journal of Computer Mathematics, 2018, vol. 95, no 6-7, pp. 1423-1443. [ DOI : 10.1080/00207160.2018.1437911 ]
https://hal.archives-ouvertes.fr/hal-01649721 -
6X. Antoine, Q. Tang, Y. Zhang.
A Preconditioned Conjugated Gradient Method for Computing Ground States of Rotating Dipolar Bose-Einstein Condensates via Kernel Truncation Method for Dipole-Dipole Interaction Evaluation, in: Communications in Computational Physics, 2018, vol. 24, no 4, pp. 966-988.
https://hal.archives-ouvertes.fr/hal-01649724 -
7L. Baudouin, E. Crépeau, J. Valein.
Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, in: IEEE Transactions on Automatic Control, 2018, https://arxiv.org/abs/1711.09696.
https://hal.laas.fr/hal-01643321 -
8N. Burq, D. Dos Santos Ferreira, K. Krupchyk.
From semiclassical Strichartz estimates to uniform resolvent estimates on compact manifolds, in: International Mathematics Research Notices, 2018, vol. 2018, no 16, pp. 5178-5218, https://arxiv.org/abs/1507.02307. [ DOI : 10.1093/imrn/rnx042 ]
https://hal.archives-ouvertes.fr/hal-01251701 -
9B. H. Haak, D. Maity, T. Takahashi, M. Tucsnak.
Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid, in: Mathematical News / Mathematische Nachrichten, 2018, https://arxiv.org/abs/1710.08245.
https://hal.archives-ouvertes.fr/hal-01619647 -
10S. Ji, Y. Yang, G. Pang, X. Antoine.
Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains, in: Computer Physics Communications, 2018, vol. 222, pp. 84-93. [ DOI : 10.1016/j.cpc.2017.09.019 ]
https://hal.archives-ouvertes.fr/hal-01649707 -
11T. Khajah, X. Antoine, S. P. Bordas.
B-spline FEM for time-harmonic acoustic scattering and propagation, in: Journal of Theoretical and Computational Acoustics, 2018, vol. 26, no 4, 1850059 p. [ DOI : 10.1142/S2591728518500597 ]
https://hal.archives-ouvertes.fr/hal-01377485 -
12S. Micu, T. Takahashi.
Local controllability to stationary trajectories of a one-dimensional simplified model arising in turbulence, in: Journal of Differential Equations, 2018.
https://hal.archives-ouvertes.fr/hal-01572317 -
13A. Munnier, K. Ramdani.
Calderón cavities inverse problem as a shape-from-moments problem, in: Quarterly of Applied Mathematics, 2018, vol. 76, pp. 407-435. [ DOI : 10.1090/qam/1505 ]
https://hal.inria.fr/hal-01503425 -
14B. Obando, T. Takahashi.
Existence of weak solutions for a Bingham fluid-rigid body system, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2018.
https://hal.archives-ouvertes.fr/hal-01942426 -
15K. Ramdani, J. Valein, J.-C. Vivalda.
Adaptive observer for age-structured population with spatial diffusion, in: North-Western European Journal of Mathematics, 2018, vol. 4, pp. 39-58.
https://hal.inria.fr/hal-01469488 -
16J.-F. Scheid, J. Sokolowski.
Shape optimization for a fluid-elasticity system, in: Pure and Applied Functional Analysis, 2018, vol. 3, no 1, pp. 193-217.
https://hal.archives-ouvertes.fr/hal-01449478 -
17J. Zhang, D. Li, X. Antoine.
Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain, in: Communications in Computational Physics, 2019, vol. 50, no 4, pp. 417-429.
https://hal.archives-ouvertes.fr/hal-01422725
International Conferences with Proceedings
-
18M. Ghattassi, J.-C. Vivalda, T. M. Laleg-Kirati.
State observer design for Direct Contact Membrane Distillation Parabolic systems, in: ACC 2018 - American Control Conference, Milwaukee, United States, IEEE, June 2018. [ DOI : 10.23919/ACC.2018.8431155 ]
https://hal.inria.fr/hal-01876673
Other Publications
-
19X. Antoine, L. Emmanuel.
Explicit computation of Robin parameters in optimized Schwarz waveform relaxation methods for Schrödinger equations based on pseudodifferential operators, November 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01929066 -
20X. Antoine, L. Emmanuel.
On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation, 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01649736 -
21X. Antoine, E. Lorin.
A simple pseudospectral method for the computation of the time-dependent Dirac equation with Perfectly Matched Layers. Application to quantum relativistic laser physics, November 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01929065 -
22X. Antoine, E. Lorin.
Towards Perfectly Matched Layers for time-dependent space fractional PDEs, December 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01962622 -
23M. Bellassoued, M. Choulli, D. Dos Santos Ferreira, Y. Kian, P. Stefanov.
A Borg-Levinson theorem for magnetic Schrödinger operators on a Riemannian manifold, July 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01847734 -
24M. Boulakia, S. Guerrero, T. Takahashi.
Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, November 2018, working paper or preprint.
https://hal.inria.fr/hal-01939464 -
25R. Buffe.
A Carleman estimate in the neighborhood of a multi-interface and applications to control theory, February 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01703306 -
26R. Buffe, K. D. Phung.
A spectral inequality for degenerated operators and applications, March 2018, https://arxiv.org/abs/1803.07296 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01735840 -
27T. Chambrion, L. Thomann.
A topological obstruction to the controllability of nonlinear wave equations with bilinear control term, September 2018, https://arxiv.org/abs/1809.07107 - 13 pages.
https://hal.archives-ouvertes.fr/hal-01876952 -
28T. Chambrion, L. Thomann.
On the bilinear control of the Gross-Pitaevskii equation, October 2018, https://arxiv.org/abs/1810.09792 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01901819 -
29A. Duca.
Bilinear quantum systems on compact graphs: well-posedness and global exact controllability, July 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01830297 -
30A. Duca.
Controllability of bilinear quantum systems in explicit times via explicit control fields, June 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01520173 -
31A. Duca.
Simultaneous global exact controllability in projection, June 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01481873 -
32L. Gagnon.
Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface, December 2018, https://arxiv.org/abs/1711.00448 - 28 pages, 30 figures.
https://hal.inria.fr/hal-01958161 -
33L. Gagnon, J. Urquiza.
Recovering the uniform boundary observability with spectral Legendre-Galerkin formulations of the 1-D wave equation, December 2018, https://arxiv.org/abs/1612.00332 - 24 pages, 15 figures.
https://hal.inria.fr/hal-01958154 -
34J. Lequeurre, A. Munnier.
Vorticity and stream function formulations for the 2d Navier-Stokes equations in a bounded domain, December 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01891763 -
35G. Pang, Y. Yang, X. Antoine, S. Tang.
Stability and convergence analysis of artificial boundary conditions for the Schrödinger equation on a rectangular domain, October 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01906150
-
36C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.
Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659. -
37X. Antoine, K. Ramdani, B. Thierry.
Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259. -
38X. Antoine, C. Geuzaine, K. Ramdani.
Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107. -
39D. Auroux, J. Blum.
A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319. -
40M. I. Belishev, S. A. Ivanov.
Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262. -
41M. Bellassoued, D. Dos Santos Ferreira.
Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.
http://dx.doi.org/10.3934/ipi.2011.5.745 -
42M. Bellassoued, D. D. S. Ferreira.
Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.
http://dx.doi.org/10.1088/0266-5611/26/12/125010 -
43Y. Boubendir, X. Antoine, C. Geuzaine.
A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280. -
44M. Boulakia.
Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.
http://dx.doi.org/10.1016/j.matpur.2005.08.004 -
45M. Boulakia, S. Guerrero.
Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.
http://dx.doi.org/10.1016/j.matpur.2010.04.002 -
46M. Boulakia, A. Osses.
Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.
http://dx.doi.org/10.1051/cocv:2007031 -
47M. Boulakia, E. Schwindt, T. Takahashi.
Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.
http://dx.doi.org/10.4171/IFB/282 -
48G. Bruckner, M. Yamamoto.
Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748. -
49A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.
Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.
http://dx.doi.org/10.1007/s00021-004-0121-y -
50C. Choi, G. Nakamura, K. Shirota.
Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101. -
51C. Conca, J. San Martín, M. Tucsnak.
Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.
http://dx.doi.org/10.1080/03605300008821540 -
52D. Coutand, S. Shkoller.
Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.
http://dx.doi.org/10.1007/s00205-004-0340-7 -
53D. Coutand, S. Shkoller.
The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.
http://dx.doi.org/10.1007/s00205-005-0385-2 -
54B. Desjardins, M. J. Esteban.
On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.
http://dx.doi.org/10.1080/03605300008821553 -
55B. Desjardins, M. J. Esteban.
Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.
http://dx.doi.org/10.1007/s002050050136 -
56B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.
Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538. -
57A. El Badia, T. Ha-Duong.
Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139. -
58M. El Bouajaji, X. Antoine, C. Geuzaine.
Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260. -
59M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.
A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57. [ DOI : 10.1016/j.jcp.2015.03.041 ]
https://hal.archives-ouvertes.fr/hal-01095566 -
60E. Feireisl.
On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.
http://dx.doi.org/10.1007/s00205-002-0242-5 -
61E. Feireisl.
On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.
http://dx.doi.org/10.1007/s00028-003-0110-1 -
62E. Feireisl, M. Hillairet, Š. Nečasová.
On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.
http://dx.doi.org/10.1088/0951-7715/21/6/012 -
63E. Fridman.
Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260. -
64G. P. Galdi, A. L. Silvestre.
On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.
http://dx.doi.org/10.1512/iumj.2009.58.3758 -
65O. Glass, F. Sueur.
The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.
http://dx.doi.org/10.1090/S0002-9939-2011-11219-X -
66C. Grandmont, Y. Maday.
Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.
http://dx.doi.org/10.1051/m2an:2000159 -
67G. Haine.
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462. -
68G. Haine, K. Ramdani.
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343. -
69J. Houot, A. Munnier.
On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158. -
70O. Y. Imanuvilov, T. Takahashi.
Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.
http://dx.doi.org/10.1016/j.matpur.2007.01.005 -
71V. Isakov.
Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127. -
72N. V. Judakov.
The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255. -
73B. Kaltenbacher, A. Neubauer, O. Scherzer.
Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6. -
74G. Legendre, T. Takahashi.
Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.
http://dx.doi.org/10.1051/m2an:2008020 -
75J. Lequeurre.
Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.
http://dx.doi.org/10.1137/10078983X -
76D. Luenberger.
Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80. -
77P. Moireau, D. Chapelle, P. Le Tallec.
Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677. -
78A. Munnier, B. Pinçon.
Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.
http://dx.doi.org/10.1142/S0218202510004829 -
79A. Munnier, E. Zuazua.
Large time behavior for a simplified -dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.
http://dx.doi.org/10.1081/PDE-200050080 -
80J. O'Reilly.
Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170. -
81J. Ortega, L. Rosier, T. Takahashi.
On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.
http://dx.doi.org/10.1016/j.anihpc.2005.12.004 -
82K. Ramdani, M. Tucsnak, G. Weiss.
Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625. -
83J.-P. Raymond.
Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.
http://dx.doi.org/10.1137/080744761 -
84J. San Martín, J.-F. Scheid, L. Smaranda.
A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.
http://dx.doi.org/10.1007/s00211-012-0460-1 -
85J. San Martín, J.-F. Scheid, L. Smaranda.
The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246. -
86J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).
http://dx.doi.org/10.1137/S0036142903438161 -
87J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.
http://dx.doi.org/10.1007/s00205-007-0092-2 -
88J. San Martín, L. Smaranda, T. Takahashi.
Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.
http://dx.doi.org/10.1016/j.cam.2008.12.021 -
89J. San Martín, V. Starovoitov, M. Tucsnak.
Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.
http://dx.doi.org/10.1007/s002050100172 -
90D. Serre.
Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.
http://dx.doi.org/10.1007/BF03167757 -
91P. Stefanov, G. Uhlmann.
Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011. -
92T. Takahashi.
Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532. -
93H. Trinh, T. Fernando.
Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420. -
94J. L. Vázquez, E. Zuazua.
Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.
http://dx.doi.org/10.1081/PDE-120024530 -
95H. F. Weinberger.
On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.