Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1N. Chesneau.
Learning to Recognize Actions with Weak Supervision, Université Grenoble Alpes, February 2018.
https://tel.archives-ouvertes.fr/tel-01893147 -
2G. Chéron.
Structured modeling and recognition of human actions in video, Ecole normale supérieure - ENS PARIS, December 2018.
https://hal.inria.fr/tel-01975247 -
3P. Tokmakov.
Learning from motion, Université Grenoble Alpes, June 2018.
https://tel.archives-ouvertes.fr/tel-01908817
Articles in International Peer-Reviewed Journals
-
4N. Chesneau, K. Alahari, C. Schmid.
Learning from Web Videos for Event Classification, in: IEEE Transactions on Circuits and Systems for Video Technology, 2018. [ DOI : 10.1109/TCSVT.2017.2764624 ]
https://hal.inria.fr/hal-01618400 -
5T. Dias-Alves, J. Mairal, M. Blum.
Loter: A software package to infer local ancestry for a wide range of species, in: Molecular Biology and Evolution, June 2018, vol. 35, no 9, pp. 2318 - 2326. [ DOI : 10.1093/molbev/msy126 ]
https://hal.inria.fr/hal-01630228 -
6G. Durif, L. Modolo, J. Michaelsson, J. E. Mold, S. Lambert-Lacroix, F. Picard.
High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression, in: Bioinformatics, February 2018, vol. 34, no 3, pp. 485-493, https://arxiv.org/abs/1502.05933. [ DOI : 10.1093/bioinformatics/btx571 ]
https://hal.archives-ouvertes.fr/hal-01587360 -
7B. Ham, M. Cho, C. Schmid, J. Ponce.
Proposal Flow: Semantic Correspondences from Object Proposals, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 40, no 7, pp. 1711-1725. [ DOI : 10.1109/TPAMI.2017.2724510 ]
https://hal.inria.fr/hal-01644132 -
8G. Hu, X. Peng, Y. Yang, T. Hospedales, J. Verbeek.
Frankenstein: Learning Deep Face Representations using Small Data, in: IEEE Transactions on Image Processing, January 2018, vol. 27, no 1, pp. 293-303, https://arxiv.org/abs/1603.06470. [ DOI : 10.1109/TIP.2017.2756450 ]
https://hal.inria.fr/hal-01306168 -
9H. Lin, J. Mairal, Z. Harchaoui.
Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice, in: Journal of Machine Learning Research, April 2018, vol. 18, no 212, pp. 1-54, http://jmlr.org/papers/volume18/17-748/17-748.pdf.
https://hal.inria.fr/hal-01664934 -
10A. Mensch, J. Mairal, B. Thirion, G. Varoquaux.
Stochastic Subsampling for Factorizing Huge Matrices, in: IEEE Transactions on Signal Processing, January 2018, vol. 66, no 1, pp. 113-128, https://arxiv.org/abs/1701.05363. [ DOI : 10.1109/TSP.2017.2752697 ]
https://hal.archives-ouvertes.fr/hal-01431618 -
11G. Rogez, C. Schmid.
Image-based Synthesis for Deep 3D Human Pose Estimation, in: International Journal of Computer Vision, September 2018, vol. 126, no 9, pp. 993–1008, https://arxiv.org/abs/1802.04216. [ DOI : 10.1007/s11263-018-1071-9 ]
https://hal.inria.fr/hal-01717188 -
12G. Rogez, P. Weinzaepfel, C. Schmid.
LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
https://hal.archives-ouvertes.fr/hal-01961189 -
13J. S. Supancic, G. Rogez, Y. Yang, J. Shotton, D. Ramanan.
Depth-based hand pose estimation: methods, data, and challenges, in: International Journal of Computer Vision, November 2018, vol. 126, no 11, pp. 1180–1198. [ DOI : 10.1007/s11263-018-1081-7 ]
https://hal.inria.fr/hal-01759416 -
14P. Tokmakov, C. Schmid, K. Alahari.
Learning to Segment Moving Objects, in: International Journal of Computer Vision, 2018, https://arxiv.org/abs/1712.01127.
https://hal.archives-ouvertes.fr/hal-01653720 -
15G. Varol, I. Laptev, C. Schmid.
Long-term Temporal Convolutions for Action Recognition, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, June 2018, vol. 40, no 6, pp. 1510-1517, https://arxiv.org/abs/1604.04494. [ DOI : 10.1109/TPAMI.2017.2712608 ]
https://hal.inria.fr/hal-01241518 -
16V. Zadrija, J. Krapac, S. Šegvić, J. Verbeek.
Sparse weakly supervised models for object localization in road environment, in: Computer Vision and Image Understanding, 2018, pp. 1-13. [ DOI : 10.1016/j.cviu.2018.10.004 ]
https://hal.inria.fr/hal-01900418
International Conferences with Proceedings
-
17F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, K. Alahari.
End-to-End Incremental Learning, in: ECCV 2018 - European Conference on Computer Vision, Munich, Germany, V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss (editors), Lecture Notes in Computer Science, September 2018, https://arxiv.org/abs/1807.09536.
https://hal.inria.fr/hal-01849366 -
18V. Choutas, P. Weinzaepfel, J. Revaud, C. Schmid.
PoTion: Pose MoTion Representation for Action Recognition, in: CVPR 2018 - IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, United States, IEEE, June 2018, pp. 1-10.
https://hal.inria.fr/hal-01764222 -
19G. Chéron, J.-B. Alayrac, I. Laptev, C. Schmid.
A flexible model for training action localization with varying levels of supervision, in: NIPS 2018 - 32nd Conference on Neural Information Processing Systems, Montréal, Canada, December 2018, pp. 1-17, https://arxiv.org/abs/1806.11328.
https://hal.inria.fr/hal-01937002 -
20C. Couprie, P. Luc, J. Verbeek.
Joint Future Semantic and Instance Segmentation Prediction, in: ECCV Workshop on Anticipating Human Behavior, Munich, Germany, 2018.
https://hal.inria.fr/hal-01867746 -
21M. Douze, A. Sablayrolles, H. Jégou.
Link and code: Fast indexing with graphs and compact regression codes, in: CVPR 2018 - IEEE Conference on Computer Vision & Pattern Recognition, Salt Lake City, United States, IEEE, June 2018, pp. 1-9.
https://hal.inria.fr/hal-01955971 -
22G. Durif, L. Modolo, J. E. Mold, S. Lambert-Lacroix, F. Picard.
Probabilistic Count Matrix Factorization for Single Cell Expression Data Analysis, in: RECOMB 2018 - 22nd Annual International Conference on Research in Computational Molecular Biology, Paris, France, B. J. Raphael (editor), Lecture Notes in Bioinformatics, Springer, April 2018, vol. 10812, pp. 254-255.
https://hal.archives-ouvertes.fr/hal-01962030 -
23N. Dvornik, J. Mairal, C. Schmid.
Modeling Visual Context is Key to Augmenting Object Detection Datasets, in: ECCV 2018 - European Conference on Computer Vision, Munich, Germany, LNCS, Springer, September 2018, vol. 11216, pp. 375-391, https://arxiv.org/abs/1807.07428. [ DOI : 10.1007/978-3-030-01258-8_23 ]
https://hal.archives-ouvertes.fr/hal-01844474 -
24M. Elbayad, L. Besacier, J. Verbeek.
Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction, in: CoNLL 2018 - Conference on Computational Natural Language Learning, Brussels, Belgium, October 2018, pp. 1-11.
https://hal.inria.fr/hal-01851612 -
25M. Elbayad, L. Besacier, J. Verbeek.
Token-level and sequence-level loss smoothing for RNN language models, in: ACL - 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, July 2018.
https://hal.inria.fr/hal-01790879 -
26C. Gu, C. Sun, D. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan, G. Toderici, S. Ricco, R. R. Sukthankar, C. Schmid, J. Malik.
AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, in: CVPR 2018 - Computer Vision and Pattern Recognition, Salt Lake City, United States, IEEE, June 2018, pp. 1-10.
https://hal.inria.fr/hal-01764300 -
27X. Li, J. Ylioinas, J. Verbeek, J. Kannala.
Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization, in: ECCV 2018 - Workshop Geometry Meets Deep Learning, Munich, Germany, September 2018, pp. 1-16.
https://hal.inria.fr/hal-01867143 -
28P. Luc, C. Couprie, Y. Lecun, J. Verbeek.
Predicting Future Instance Segmentation by Forecasting Convolutional Features, in: ECCV 2018 - European Conference on Computer Vision, Munich, Germany, September 2018, pp. 1-21.
https://hal.inria.fr/hal-01757669 -
29T. Lucas, C. Tallec, J. Verbeek, Y. Ollivier.
Mixed batches and symmetric discriminators for GAN training, in: ICML - 35th International Conference on Machine Learning, Stockholm, Sweden, July 2018.
https://hal.inria.fr/hal-01791126 -
30T. Lucas, J. Verbeek.
Auxiliary Guided Autoregressive Variational Autoencoders, in: ECML-PKDD 2018 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Dublin, Ireland, September 2018, pp. 1-16.
https://hal.inria.fr/hal-01652881 -
31C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, Z. Harchaoui.
Catalyst for Gradient-based Nonconvex Optimization, in: AISTATS 2018 - 21st International Conference on Artificial Intelligence and Statistics, Lanzarote, Spain, April 2018, pp. 1-10.
https://hal.inria.fr/hal-01773296 -
32K. Shmelkov, C. Schmid, K. Alahari.
How good is my GAN?, in: ECCV 2018 - European Conference on Computer Vision, Munich, Germany, V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss (editors), Lecture Notes in Computer Science, September 2018, pp. 1-20, https://arxiv.org/abs/1807.09499.
https://hal.inria.fr/hal-01850447 -
33G. A. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, K. Alahari.
Actor and Observer: Joint Modeling of First and Third-Person Videos, in: CVPR 2018 - IEEE Conference on Computer Vision & Pattern Recognition, Salt Lake City, Utah, United States, IEEE, June 2018, pp. 1-6, https://arxiv.org/abs/1804.09627.
https://hal.inria.fr/hal-01755547 -
34G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer, I. Laptev, C. Schmid.
BodyNet: Volumetric Inference of 3D Human Body Shapes, in: ECCV 2018 - 15th European Conference on Computer Vision, Munich, Germany, September 2018, pp. 1-27, https://arxiv.org/abs/1804.04875.
https://hal.inria.fr/hal-01852169 -
35N. Verma, E. Boyer, J. Verbeek.
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis, in: CVPR - IEEE Conference on Computer Vision & Pattern Recognition, Salt Lake City, United States, June 2018, pp. 1-9, https://arxiv.org/abs/1706.05206.
https://hal.inria.fr/hal-01540389 -
36D. Wynen, C. Schmid, J. Mairal.
Unsupervised Learning of Artistic Styles with Archetypal Style Analysis, in: NeurIPS 2018, Montréal, Canada, December 2018, Accepted at NIPS 2018, Montréal, Canada.
https://hal.inria.fr/hal-01802131
Other Publications
-
37A. Bietti, A. Agarwal, J. Langford.
A Contextual Bandit Bake-off, December 2018, https://arxiv.org/abs/1802.04064 - working paper or preprint.
https://hal.inria.fr/hal-01708310 -
38A. Bietti, J. Mairal.
Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations, October 2018, https://arxiv.org/abs/1706.03078 - working paper or preprint.
https://hal.inria.fr/hal-01536004 -
39A. Bietti, G. Mialon, J. Mairal.
On Regularization and Robustness of Deep Neural Networks, November 2018, https://arxiv.org/abs/1810.00363 - working paper or preprint.
https://hal.inria.fr/hal-01884632 -
40D. Chen, L. Jacob, J. Mairal.
Biological Sequence Modeling with Convolutional Kernel Networks, October 2018, working paper or preprint.
https://hal.inria.fr/hal-01632912 -
41G. Chéron, A. Osokin, I. Laptev, C. Schmid.
Modeling Spatio-Temporal Human Track Structure for Action Localization, January 2019, https://arxiv.org/abs/1806.11008 - working paper or preprint.
https://hal.inria.fr/hal-01979583 -
42N. Dvornik, J. Mairal, C. Schmid.
On the Importance of Visual Context for Data Augmentation in Scene Understanding, September 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01869784 -
43H. Lin, J. Mairal, Z. Harchaoui.
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration, July 2018, https://arxiv.org/abs/1610.00960 - working paper or preprint.
https://hal.inria.fr/hal-01376079 -
44A. Mensch, J. Mairal, B. Thirion, G. Varoquaux.
Extracting Universal Representations of Cognition across Brain-Imaging Studies, October 2018, https://arxiv.org/abs/1809.06035 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01874713 -
45A. Pashevich, D. Hafner, J. Davidson, R. R. Sukthankar, C. Schmid.
Modulated Policy Hierarchies, December 2018, Deep RL workshop at NIPS 2018.
https://hal.archives-ouvertes.fr/hal-01963580 -
46J. Peyre, I. Laptev, C. Schmid, J. Sivic.
Detecting rare visual relations using analogies, January 2019, https://arxiv.org/abs/1812.05736 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01975760 -
47A. Ruiz, O. Martinez, X. Binefa, J. Verbeek.
Learning Disentangled Representations with Reference-Based Variational Autoencoders, October 2018, working paper or preprint.
https://hal.inria.fr/hal-01896007 -
48K. Shmelkov, T. Lucas, K. Alahari, C. Schmid, J. Verbeek.
Coverage and quality driven training of generative image models, October 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01886285