Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1C. Maigrot.
Detection of misleading information on social networks, Université de Rennes 1 [UR1], April 2019.
https://tel.archives-ouvertes.fr/tel-02404234
Articles in International Peer-Reviewed Journals
-
2L. Amsaleg, M. E. Houle, E. Schubert.
Introduction to Special Issue of the 9th International Conference on Similarity Search and Applications (SISAP 2016), in: Information Systems, February 2019, vol. 80, 107 p. [ DOI : 10.1016/j.is.2018.11.006 ]
https://hal.inria.fr/hal-02106914 -
3M. Cui, L. Li, M. Shi.
A Selective Biogeography-Based Optimizer Considering Resource Allocation for Large-Scale Global Optimization, in: Computational Intelligence and Neuroscience, July 2019, pp. 1-18. [ DOI : 10.1155/2019/1240162 ]
https://hal.inria.fr/hal-02383076 -
4C. Dalloux, N. Grabar, V. Claveau.
Detecting negation: machine learning and a corpus for French, in: Revue des Sciences et Technologies de l'Information - Série TSI : Technique et Science Informatiques, December 2019, pp. 1-21.
https://hal.archives-ouvertes.fr/hal-02402913 -
5S. Li, X. Song, H. Lu, L. Zeng, M. Shi, F. Liu.
Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm, in: Expert Systems with Applications, July 2019, vol. 139, pp. 1-11. [ DOI : 10.1016/j.eswa.2019.112839 ]
https://hal.inria.fr/hal-02383107 -
6N. Papanelopoulos, Y. Avrithis, S. Kollias.
Revisiting the medial axis for planar shape decomposition, in: Computer Vision and Image Understanding, February 2019, vol. 179, pp. 66-78. [ DOI : 10.1016/j.cviu.2018.10.007 ]
https://hal.inria.fr/hal-01930939 -
7O. Siméoni, A. Iscen, G. Tolias, Y. Avrithis, O. Chum.
Graph-based Particular Object Discovery, in: Machine Vision and Applications, March 2019, vol. 30, no 2, pp. 243-254. [ DOI : 10.1007/s00138-019-01005-z ]
https://hal.inria.fr/hal-02370238
International Conferences with Proceedings
-
8A. Antonini, F. Benatti, E. King, F. Vignale, G. Gravier.
Modelling changes in diaries, correspondence and authors' libraries to support research on reading: the READ-IT approach, in: ODOCH 2019 - First International Workshop on Open Data and Ontologies for Cultural Heritage, Rome, Italy, June 2019, pp. 1-12.
https://hal.archives-ouvertes.fr/hal-02130008 -
9C. B. El Vaigh, F. Goasdoué, G. Gravier, P. Sébillot.
Using Knowledge Base Semantics in Context-Aware Entity Linking, in: DocEng 2019 - 19th ACM Symposium on Document Engineering, Berlin, Germany, ACM, September 2019, pp. 1-10. [ DOI : 10.1007/978-3-030-27520-4_8 ]
https://hal.inria.fr/hal-02171981 -
10M. Gheisari, T. Furon, L. Amsaleg.
Privacy Preserving Group Membership Verification and Identification, in: CVPR 2019 - IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, United States, IEEE, June 2019, pp. 1-9, https://arxiv.org/abs/1904.10327.
https://hal.archives-ouvertes.fr/hal-02107442 -
11S. Gíslason, B. Þ. Jónsson, L. Amsaleg.
Integration of Exploration and Search: A Case Study of the Model, in: MMM 2019 - 25th International Conference on MultiMedia Modeling, Thessaloniki, Greece, LNCS, Springer, December 2019, vol. 11295, pp. 156-168. [ DOI : 10.1007/978-3-030-05710-7_13 ]
https://hal.inria.fr/hal-02106893 -
12A. Iscen, G. Tolias, Y. Avrithis, O. Chum.
Label Propagation for Deep Semi-supervised Learning, in: CVPR 2019 - IEEE Computer Vision and Pattern Recognition Conference, Long Beach, United States, IEEE, June 2019, pp. 1-10.
https://hal.inria.fr/hal-02370297 -
13C. Leverger, S. Malinowski, T. Guyet, V. Lemaire, A. Bondu, A. Termier.
Toward a Framework for Seasonal Time Series Forecasting Using Clustering, in: IDEAL 2019, Manchester, United Kingdom, October 2019, pp. 328-340. [ DOI : 10.1007/978-3-030-33607-3_36 ]
https://hal.inria.fr/hal-02371221 -
14Y. Lifchitz, Y. Avrithis, S. Picard, A. Bursuc.
Dense Classification and Implanting for Few-Shot Learning, in: CVPR 2019 - IEEE Computer Vision and Pattern Recognition Conference, Long Beach, United States, IEEE, June 2019, pp. 1-10.
https://hal.inria.fr/hal-02371279 -
15Y. Liu, M. Shi, Q. Zhao, X. Wang.
Point in, Box out: Beyond Counting Persons in Crowds, in: CVPR 2019 - IEEE Computer Vision and Pattern Recognition Conference, Long Beach, United States, IEEE, June 2019, pp. 1-10.
https://hal.inria.fr/hal-02383057 -
16H. Ragnarsdóttir, Þ. Þorleiksdóttir, O. S. Khan, B. Þ. Jónsson, G. Þ. Guðmundsson, J. Zahálka, S. Rudinac, L. Amsaleg, M. Worring.
Exquisitor: Breaking the Interaction Barrier for Exploration of 100 Million Images, in: MM 2019 - 27th ACM International Conference on Multimedia, Nice, France, ACM, October 2019, pp. 1029-1031. [ DOI : 10.1145/3343031.3350580 ]
https://hal.inria.fr/hal-02378272 -
17F. C. G. Reis, R. Almeida, E. Kijak, S. Malinowski, S. J. F. Guimarães, Z. do Patrocinio.
Combining convolutional side-outputs for road image segmentation, in: IJCNN 2019 - International Joint Conference on Neural Networks, Budapest, Hungary, IEEE, July 2019, pp. 1-8. [ DOI : 10.1109/IJCNN.2019.8851843 ]
https://hal.inria.fr/hal-02370834 -
18M. Shi, Z. Yang, C. Xu, Q. Chen.
Revisiting Perspective Information for Efficient Crowd Counting, in: CVPR 2019 - IEEE Computer Vision and Pattern Recognition Conference, Long Beach, United States, IEEE, June 2019, pp. 1-10.
https://hal.inria.fr/hal-01831109 -
19O. Siméoni, Y. Avrithis, O. Chum.
Local Features and Visual Words Emerge in Activations, in: CVPR 2019 - IEEE Computer Vision and Pattern Recognition Conference, Long Beach, United States, IEEE, June 2019, pp. 1-10.
https://hal.archives-ouvertes.fr/hal-02374156 -
20R. Souza, R. Almeida, R. Miranda, Z. Kleber Gonçalves do Patrocinio, S. Malinowski, S. J. F. Guimarães.
BRIEF-based mid-level representations for time series classification, in: CIARP 2019 - 24th Iberoamerican Congress on Pattern Recognition, La Havane, Cuba, October 2019, pp. 449-457. [ DOI : 10.1007/978-3-030-33904-3_42 ]
https://hal.inria.fr/hal-02371260
Conferences without Proceedings
-
21C. Dalloux, V. Claveau, N. Grabar.
Speculation and negation detection in french biomedical corpora, in: RANLP 2019 - Recent Advances in Natural Language Processing, Varna, Bulgaria, September 2019, pp. 1-10.
https://hal.archives-ouvertes.fr/hal-02284444 -
22T. Furon.
Watermarking error exponents in the presence of noise: The case of the dual hypercone detector, in: IH&MMSEC'19 - 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, France, ACM, July 2019, pp. 173-181. [ DOI : 10.1145/3335203.3335731 ]
https://hal.archives-ouvertes.fr/hal-02122206 -
23M. Gheisari, T. Furon, L. Amsaleg.
Group Membership Verification with Privacy: Sparse or Dense?, in: WIFS 2019 - IEEE International Workshop on Information Forensics and Security, Delft, Netherlands, IEEE, December 2019, pp. 1-6.
https://hal.archives-ouvertes.fr/hal-02307926 -
24M. Gheisari, T. Furon, L. Amsaleg, B. Razeghi, S. Voloshynovskiy.
Aggregation and embedding for group membership verification, in: ICASSP 2019 - IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, IEEE, May 2019, pp. 2592-2596, https://arxiv.org/abs/1812.03943 - accepted at ICASSP 2019. [ DOI : 10.1109/ICASSP.2019.8682422 ]
https://hal.archives-ouvertes.fr/hal-02091036 -
25N. Grabar, C. Grouin, T. Hamon, V. Claveau.
Annotated corpus with clinical cases in French, in: TALN 2019 - 26e Conference on Traitement Automatique des Langues Naturelles, Toulouse, France, July 2019, pp. 1-14.
https://hal.archives-ouvertes.fr/hal-02391878 -
26N. Grabar, C. Grouin, T. Hamon, V. Claveau.
Information Retrieval and Information Extraction from Clinical Cases. Presentation of the DEFT 2019 Challenge, in: DEFT 2019 - Défi fouille de texte, Toulouse, France, July 2019, pp. 1-10.
https://hal.archives-ouvertes.fr/hal-02280852 -
27C. Grouin, N. Grabar, V. Claveau, T. Hamon.
Clinical Case Reports for NLP, in: BioNLP 2019 - 18th ACL Workshop on Biomedical Natural Language Processing, Florence, Italy, ACL, August 2019, pp. 273–282. [ DOI : 10.18653/v1/W19-5029 ]
https://hal.archives-ouvertes.fr/hal-02371243 -
28A. Perquin, G. Lecorvé, D. Lolive, L. Amsaleg.
Évaluation objective de plongements pour la synthèse de parole guidée par réseaux de neurones, in: Traitement automatique du langage naturel, Toulouse, France, July 2019.
https://hal.archives-ouvertes.fr/hal-02419483 -
29Y. Wang, R. Emonet, E. Fromont, S. Malinowski, E. Menager, L. Mosser, R. Tavenard.
Classification de séries temporelles basée sur des "shapelets" interprétables par réseaux de neurones antagonistes, in: CAp 2019 - Conférence sur l'Apprentissage automatique, Toulouse, France, July 2019, pp. 1-2.
https://hal.archives-ouvertes.fr/hal-02268004
Scientific Books (or Scientific Book chapters)
-
30Proceedings of the workshop DeFt - Défi Fouille de Textes, July 2019, pp. 1-97.
https://hal.archives-ouvertes.fr/hal-02391768 -
31L. Amsaleg, O. Chelly, M. E. Houle, K.-I. Kawarabayashi, M. Radovanović, W. Treeratanajaru.
Intrinsic Dimensionality Estimation within Tight Localities, in: Proceedings of the 2019 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, May 2019, pp. 181-189. [ DOI : 10.1137/1.9781611975673.21 ]
https://hal.inria.fr/hal-02125331 -
32C. Fabre, E. Morin, S. Rosset, P. Sébillot.
Varia - Préface - 60-1, ATALA, January 2020, vol. 60, no 1, pp. 7-11.
https://hal.archives-ouvertes.fr/hal-02433763 -
33E. Morin, S. Rosset, P. Sébillot.
Varia - Préface - 59-1, ATALA, May 2019, vol. 59, no 1, pp. 7-11.
https://hal.archives-ouvertes.fr/hal-01789046
Books or Proceedings Editing
-
34L. Amsaleg, B. Huet, M. Larson, G. Gravier, H. Hung, C.-W. Ngo, W. T. Ooi (editors)
Proceedings of the 27th ACM International Conference on Multimedia, ACM Press, Nice, France, October 2019. [ DOI : 10.1145/3343031 ]
https://hal.inria.fr/hal-02378803
Internal Reports
-
35B. Caramiaux, F. Lotte, J. Geurts, G. Amato, M. Behrmann, F. Bimbot, F. Falchi, A. Garcia, J. Gibert, G. Gravier, H. Holken, H. Koenitz, S. Lefebvre, A. Liutkus, A. Perkis, R. Redondo, E. Turrin, T. Viéville, E. Vincent.
AI in the media and creative industries, New European Media (NEM), April 2019, pp. 1-35, https://arxiv.org/abs/1905.04175.
https://hal.inria.fr/hal-02125504
Other Publications
-
36A. Antonini, M. Carmen Suárez-Figueroa, A. Adamou, F. Benatti, F. Vignale, G. Gravier, L. Lupi, B. Ouvry-Vial.
Understanding the phenomenology of reading through modelling, 2019, pp. 1-22, Work in progress from the READ-IT program (www.readitproject.eu), Project Leader Brigitte Ouvry-Vial, funded by the EU- Joint Programming Initiative for Cultural Heritage.
https://hal.archives-ouvertes.fr/hal-02305957 -
37A. Antonini, F. Vignale, G. Gravier, B. Ouvry-Vial.
The Model of Reading : Modelling principles, Definitions, Schema, Alignments, 2019, READ-IT Model of Reading -V2.
https://hal-univ-lemans.archives-ouvertes.fr/hal-02301611 -
38A. Iscen, G. Tolias, Y. Avrithis, O. Chum.
Label Propagation for Deep Semi-supervised Learning, November 2019, https://arxiv.org/abs/1904.04717 - Accepted to CVPR 2019.
https://hal.inria.fr/hal-02370207 -
39A. Iscen, G. Tolias, Y. Avrithis, O. Chum, C. Schmid.
Graph Convolutional Networks for Learning with Few Clean and many Noisy Labels, November 2019, https://arxiv.org/abs/1910.00324 - working paper or preprint. [ DOI : 10.00324 ]
https://hal.inria.fr/hal-02370212 -
40Y. Lifchitz, Y. Avrithis, S. Picard, A. Bursuc.
Dense Classification and Implanting for Few-Shot Learning, November 2019, https://arxiv.org/abs/1903.05050 - CVPR 2019.
https://hal.inria.fr/hal-02370192 -
41O. Siméoni, Y. Avrithis, O. Chum.
Local Features and Visual Words Emerge in Activations, November 2019, https://arxiv.org/abs/1905.06358 - working paper or preprint.
https://hal.inria.fr/hal-02370209 -
42O. Siméoni, M. Budnik, Y. Avrithis, G. Gravier.
Rethinking deep active learning: Using unlabeled data at model training, November 2019, https://arxiv.org/abs/1911.08177 - working paper or preprint.
https://hal.inria.fr/hal-02372102 -
43Z. Yang, M. Shi, Y. Avrithis, C. Xu, V. Ferrari.
Training Object Detectors from Few Weakly-Labeled and Many Unlabeled Images, December 2019, https://arxiv.org/abs/1912.00384 - working paper or preprint.
https://hal.inria.fr/hal-02393688 -
44H. Zhang, Y. Avrithis, T. Furon, L. Amsaleg.
Smooth Adversarial Examples, November 2019, https://arxiv.org/abs/1903.11862 - working paper or preprint.
https://hal.inria.fr/hal-02370202 -
45H. Zhang, Y. Avrithis, T. Furon, L. Amsaleg.
Walking on the Edge: Fast, Low-Distortion Adversarial Examples, December 2019, https://arxiv.org/abs/1912.02153 - 13 pages, 9 figures.
https://hal.inria.fr/hal-02404216
-
46L. Amsaleg, J. E. Bailey, D. Barbe, S. Erfani, M. E. Houle, V. Nguyen, M. Radovanović.
The Vulnerability of Learning to Adversarial Perturbation Increases with Intrinsic Dimensionality, in: WIFS, 2017. -
47L. Amsaleg, O. Chelly, T. Furon, S. Girard, M. E. Houle, K.-I. Kawarabayashi, M. Nett.
Estimating Local Intrinsic Dimensionality, in: KDD, 2015. -
48L. Amsaleg, G. Þ. Guðmundsson, B. Þ. Jónsson, M. J. Franklin.
Prototyping a Web-Scale Multimedia Retrieval Service Using Spark, in: ACM TOMCCAP, 2018, vol. 14, no 3s. -
49L. Amsaleg, B. Þ. Jónsson, H. Lejsek.
Scalability of the NV-tree: Three Experiments, in: SISAP, 2018. -
50R. Balu, T. Furon, L. Amsaleg.
Sketching techniques for very large matrix factorization, in: ECIR, 2016. -
51S. Berrani, H. Boukadida, P. Gros.
Constraint Satisfaction Programming for Video Summarization, in: ISM, 2013. -
52B. Biggio, F. Roli.
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, in: Pattern Recognition, 2018. -
53P. Bosilj.
Image indexing and retrieval using component trees, Université de Bretagne Sud, 2016. -
54X. Bost.
A storytelling machine? : Automatic video summarization: the case of TV series, University of Avignon, France, 2016. -
55M. Budnik, M. Demirdelen, G. Gravier.
A Study on Multimodal Video Hyperlinking with Visual Aggregation, in: ICME, 2018. -
56N. Carlini, D. A. Wagner.
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, in: CoRR, 2018, vol. abs/1801.01944. -
57R. Carlini Sperandio, S. Malinowski, L. Amsaleg, R. Tavenard.
Time Series Retrieval using DTW-Preserving Shapelets, in: SISAP, 2018. -
58V. Claveau, L. E. S. Oliveira, G. Bouzillé, M. Cuggia, C. M. Cabral Moro, N. Grabar.
Numerical eligibility criteria in clinical protocols: annotation, automatic detection and interpretation, in: AIME, 2017. -
59A. Delvinioti, H. Jégou, L. Amsaleg, M. E. Houle.
Image Retrieval with Reciprocal and shared Nearest Neighbors, in: VISAPP, 2014. -
60H. Farid.
Photo Forensics, The MIT Press, 2016. -
61M. Gambhir, V. Gupta.
Recent automatic text summarization techniques: a survey, in: Artif. Intell. Rev., 2017, vol. 47, no 1. -
62I. Goodfellow, Y. Bengio, A. Courville.
Deep Learning, MIT Press, 2016. -
63G. Gravier, M. Ragot, L. Amsaleg, R. Bois, G. Jadi, E. Jamet, L. Monceaux, P. Sébillot.
Shaping-Up Multimedia Analytics: Needs and Expectations of Media Professionals, in: MMM, Special Session Perspectives on Multimedia Analytics, 2016. -
64A. Iscen, L. Amsaleg, T. Furon.
Scaling Group Testing Similarity Search, in: ICMR, 2016. -
65A. Iscen, G. Tolias, Y. Avrithis, O. Chum.
Mining on Manifolds: Metric Learning without Labels, in: CVPR, 2018. -
66B. Þ. Jónsson, G. Tómasson, H. Sigurþórsson, Á. Eríksdóttir, L. Amsaleg, M. K. Larusdottir.
A Multi-Dimensional Data Model for Personal Photo Browsing, in: MMM, 2015. -
67B. Þ. Jónsson, M. Worring, J. Zahálka, S. Rudinac, L. Amsaleg.
Ten Research Questions for Scalable Multimedia Analytics, in: MMM, Special Session Perspectives on Multimedia Analytics, 2016. -
68H. Kim, P. Garrido, A. Tewari, W. Xu, J. Thies, N. Nießner, P. Pérez, C. Richardt, M. Zollhöfer, C. Theobalt.
Deep Video Portraits, in: ACM TOG, 2018. -
69M. Laroze, R. Dambreville, C. Friguet, E. Kijak, S. Lefèvre.
Active Learning to Assist Annotation of Aerial Images in Environmental Surveys, in: CBMI, 2018. -
70S. Leroux, P. Molchanov, P. Simoens, B. Dhoedt, T. Breuel, J. Kautz.
IamNN: Iterative and Adaptive Mobile Neural Network for Efficient Image Classification, in: CoRR, 2018, vol. abs/1804.10123. -
71A. Lods, S. Malinowski, R. Tavenard, L. Amsaleg.
Learning DTW-Preserving Shapelets, in: IDA, 2017. -
72C. Maigrot, E. Kijak, V. Claveau.
Context-Aware Forgery Localization in Social-Media Images: A Feature-Based Approach Evaluation, in: ICIP, 2018. -
73D. Shahaf, C. Guestrin.
Connecting the dots between news articles, in: KDD, 2010. -
74M. Shi, H. Caesar, V. Ferrari.
Weakly Supervised Object Localization Using Things and Stuff Transfer, in: ICCV, 2017. -
75R. Sicre, Y. Avrithis, E. Kijak, F. Jurie.
Unsupervised part learning for visual recognition, in: CVPR, 2017. -
76R. Sicre, H. Jégou.
Memory Vectors for Particular Object Retrieval with Multiple Queries, in: ICMR, 2015. -
77O. Siméoni, A. Iscen, G. Tolias, Y. Avrithis, O. Chum.
Unsupervised Object Discovery for Instance Recognition, in: WACV, 2018. -
78O. Siméoni, A. Iscen, G. Tolias, Y. Avrithis, O. Chum.
Unsupervised Object Discovery for Instance Recognition, in: WACV, 2018. -
79H. O. Song, Y. Xiang, S. Jegelka, S. Savarese.
Deep Metric Learning via Lifted Structured Feature Embedding, in: CVPR, 2016. -
80C. Tsai, M. L. Alexander, N. Okwara, J. R. Kender.
Highly Efficient Multimedia Event Recounting from User Semantic Preferences, in: ICMR, 2014. -
81C. B. E. Vaigh, F. Goasdoué, G. Gravier, P. Sébillot.
Using Knowledge Base Semantics in Context-Aware Entity Linking, in: DocEng, 2019. -
82O. Vinyals, A. Toshev, S. Bengio, D. Erhan.
Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge, in: TPAMI, 2017, vol. 39, no 4. -
83V. Vukotić, C. Raymond, G. Gravier.
Bidirectional Joint Representation Learning with Symmetrical Deep Neural Networks for Multimodal and Crossmodal Applications, in: ICMR, 2016. -
84V. Vukotić, C. Raymond, G. Gravier.
Generative Adversarial Networks for Multimodal Representation Learning in Video Hyperlinking, in: ICMR, 2017. -
85V. Vukotić.
Deep Neural Architectures for Automatic Representation Learning from Multimedia Multimodal Data, INSA de Rennes, 2017. -
86J. Weston, S. Chopra, A. Bordes.
Memory Networks, in: CoRR, 2014, vol. abs/1410.3916. -
87H. Yu, J. Wang, Z. Huang, Y. Yang, W. Xu.
Video Paragraph Captioning Using Hierarchical Recurrent Neural Networks, in: CVPR, 2016. -
88J. Zahálka, M. Worring.
Towards interactive, intelligent, and integrated multimedia analytics, in: VAST, 2014. -
89L. Zhang, M. Shi, Q. Chen.
Crowd Counting via Scale-Adaptive Convolutional Neural Network, in: WACV, 2018. -
90X. Zhang, X. Zhou, M. Lin, J. Sun.
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, in: CoRR, 2017, vol. abs/1707.01083. -
91A. da Silva Pinto, D. Moreira, A. Bharati, J. Brogan, K. W. Bowyer, P. J. Flynn, W. J. Scheirer, A. Rocha.
Provenance filtering for multimedia phylogeny, in: ICIP, 2017.