EN FR
EN FR
MCTAO - 2019
New Software and Platforms
Bilateral Contracts and Grants with Industry
Bibliography
New Software and Platforms
Bilateral Contracts and Grants with Industry
Bibliography


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1T. Bakir, B. Bonnard, L. Bourdin, J. Rouot.

    Pontryagin-Type Conditions for Optimal Muscular Force Response to Functional Electric Stimulations, in: Journal of Optimization Theory and Applications, February 2020, vol. 184, no 2, pp. 581-602. [ DOI : 10.1007/s10957-019-01599-4 ]

    https://hal.inria.fr/hal-01854551
  • 2T. Bakir, B. Bonnard, J. Rouot.

    A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model, in: Networks and Heterogeneous Media, 2019, vol. 14, no 1, pp. 79-100. [ DOI : 10.3934/nhm.2019005 ]

    https://hal.inria.fr/hal-01779349
  • 3T. Bakir, B. Bonnard, J. Rouot.

    Geometric Optimal Control Techniques to Optimize the Production of Chemical Reactors using Temperature Control, in: Annual Reviews in Control, 2019, vol. 48, pp. 178-192. [ DOI : 10.1016/j.arcontrol.2019.09.005 ]

    https://hal.archives-ouvertes.fr/hal-02115732
  • 4N. Baresi, L. Dell'Elce, J. Cardoso dos Santos, Y. Kawakatsu.

    Long-term Evolution of Mid-altitude Quasi-satellite Orbits, in: Nonlinear Dynamics, 2020, forthcoming.

    https://hal.archives-ouvertes.fr/hal-02385546
  • 5L. Berti, L. Giraldi, C. Prud'Homme.

    Swimming at Low Reynolds Number, in: ESAIM: Proceedings and Surveys, 2019, pp. 1 - 10, https://arxiv.org/abs/1911.12213.

    https://hal.archives-ouvertes.fr/hal-02369537
  • 6P. Bettiol, B. Bonnard, A. Nolot, J. Rouot.

    Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case, in: ESAIM: Control, Optimisation and Calculus of Variations, April 2019, vol. 25, no 9. [ DOI : 10.1051/cocv/2017071 ]

    https://hal.inria.fr/hal-01442880
  • 7B. Bonnard, O. Cots, J. Rouot, T. Verron.

    Time minimal saturation of a pair of spins and application in magnetic resonance imaging, in: Mathematical Control and Related Fields, 2020, vol. 10, no 1, pp. 47-88. [ DOI : 10.3934/mcrf.2019029 ]

    https://hal.inria.fr/hal-01779377
  • 8L. Dell'Elce, D. J. Scheeres.

    Sensitivity of Optimal Control Problems Arising from their Hamiltonian Structure, in: Journal of the Astronautical Sciences, May 2019, forthcoming. [ DOI : 10.1007/s40295-019-00168-1 ]

    https://hal.archives-ouvertes.fr/hal-02385538
  • 9C. Moreau.

    Local controllability of a magnetized Purcell's swimmer, in: IEEE Control Systems Letters, May 2019. [ DOI : 10.1109/LCSYS.2019.2915004 ]

    https://hal.inria.fr/hal-02117592
  • 10L. Rifford, A. Moameni.

    Uniquely minimizing costs for the Kantorovitch problem, in: Annales de la Faculté des Sciences de Toulouse. Mathématiques, 2019, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01662537

International Conferences with Proceedings

  • 11T. Bakir, B. Bonnard, J. Rouot.

    Connection between singular arcs in optimal control using bridges.Physical occurence and Mathematical model, in: CDC 2019 - 58th Conference on Decision and Control, Nice, France, December 2019.

    https://hal.inria.fr/hal-02050014
  • 12J.-B. Caillau, S. Maslovskaya, T. Mensch, T. Moulinier, J.-B. Pomet.

    Zermelo-Markov-Dubins problem and extensions in marine navigation, in: CDC 2019 - 58th IEEE Conference on Decision and Control, Nice, France, December 2019.

    https://hal.archives-ouvertes.fr/hal-02375015
  • 13J.-B. Caillau, M. Orieux.

    Sufficient conditions for time optimality of systems with control on the disk, in: CDC 2019 - 58th IEEE Conference on Decision and Control, Nice, France, December 2019.

    https://hal.inria.fr/hal-02436211
  • 14W. Djema, O. Bernard, L. Giraldi.

    Turnpike Features in Optimal Selection of Microalgae, in: FOSBE 2019 - 8th IFAC Conference on Foundations of Systems Biology in Engineering, Valencia, Spain, October 2019.

    https://hal.inria.fr/hal-02422868
  • 15W. Djema, L. Giraldi, O. Bernard.

    An Optimal Control Strategy Separating Two Species of Microalgae in Photobioreactors, in: DYCOPS 2019 - 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems, Florianopolis, Brazil, April 2019.

    https://hal.inria.fr/hal-01891910
  • 16A. G. Yabo, J.-B. Caillau, J.-L. Gouzé.

    Singular regimes for the maximization of metabolite production, in: CDC 2019 - 58th IEEE Conference on Decision and Control, Nice, France, December 2019.

    https://hal.inria.fr/hal-02418444

Conferences without Proceedings

  • 17L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet.

    On deciding stability of high frequency amplifiers, in: IFAC 2019 - 15th IFAC Workshop on Time Delay Systems, Sinaia, Romania, September 2019.

    https://hal.inria.fr/hal-02437112
  • 18L. Dell'Elce, J.-B. Caillau, J.-B. Pomet.

    Multi-phase averaging of time-optimal low-thrust transfers, in: KePASSA 2019 - 4th International Workshop on Key Topics in Orbit Propagation Applied to Space Situational Awareness, Logrono, Spain, 2019.

    https://hal.archives-ouvertes.fr/hal-02387385
  • 19P. Izzo, A. J. Rosengren, L. Dell'Elce, P. Gurfil.

    Periodic Corrections in Secular Milankovitch Theory Applied to Passive Debris Removal, in: ISSFD 2019 - 27th International Symposium on Space Flight Dynamics (ISSFD), Melbourne, Australia, February 2019.

    https://hal.archives-ouvertes.fr/hal-02385555
  • 20A. G. Yabo, J.-B. Caillau, J.-L. Gouzé.

    Bacterial growth strategies as Optimal Control problems: maximizing metabolite production, in: FGS'2019 - 19th French-German-Swiss conference on Optimization, Nice, France, September 2019.

    https://hal.archives-ouvertes.fr/hal-02421164

Other Publications

References in notes
  • 33A. A. Agrachev, R. V. Gamkrelidze.

    Symplectic methods for optimization and control, in: Geometry of feedback and optimal control, Textbooks Pure Appl. Math., Marcel Dekker, 1998, vol. 207, pp. 19–77.
  • 34A. Agrachev, Y. L. Sachkov.

    Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
  • 35A. A. Agrachev, A. V. Sarychev.

    Strong minimality of abnormal geodesics for 2-distributions, in: J. Dynam. Control Systems, 1995, vol. 1, no 2, pp. 139–176.
  • 36A. A. Agrachev, A. V. Sarychev.

    Abnormal sub-Riemannian geodesics: Morse index and rigidity, in: Ann. Inst. H. Poincarré, Anal. non-linéaire, 1996, vol. 13, no 6, pp. 635-690.
  • 37V. I. Arnold.

    Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York, 1989, vol. 60, xvi+508 p, Translated from Russian by K. Vogtmann and A. Weinstein.
  • 38N. Baresi, L. Dell'Elce, J. Cardoso dos Santos, Y. Kawakatsu.

    Long-term Evolution of Mid-altitude Quasi-satellite Orbits, in: Nonlinear Dynamics, 2020.

    https://hal.archives-ouvertes.fr/hal-02385546
  • 39A. Belotto Da Silva, L. Rifford.

    The Sard conjecture on Martinet surfaces, in: Duke Mathematical Journal, 2018, vol. 167, no 8, pp. 1433-1471.

    https://hal.archives-ouvertes.fr/hal-01411456
  • 40P. Bettiol, B. Bonnard, A. Nolot, J. Rouot.

    Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case, in: ESAIM: Control, Optimisation and Calculus of Variations, 2018. [ DOI : 10.1051/cocv/2017071 ]

    https://hal.inria.fr/hal-01442880
  • 41A. Bombrun, J.-B. Pomet.

    The averaged control system of fast oscillating control systems, in: SIAM J. Control Optim., 2013, vol. 51, no 3, pp. 2280-2305. [ DOI : 10.1137/11085791X ]

    http://hal.inria.fr/hal-00648330/
  • 42B. Bonnard, J.-B. Caillau.

    Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, pp. 797–814.

    http://dx.doi.org/10.1515/FORUM.2009.038
  • 43B. Bonnard, J.-B. Caillau, O. Cots.

    Energy minimization in two-level dissipative quantum control: The integrable case, in: Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Discrete Contin. Dyn. Syst., AIMS, 2011, vol. suppl., pp. 198–208.
  • 44B. Bonnard, J.-B. Caillau, L. Rifford.

    Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, in: C. R. Math. Acad. Sci. Paris, 2010, vol. 348, no 23-24, pp. 1315–1318. [ DOI : 10.1016/j.crma.2010.10.036 ]

    https://hal.archives-ouvertes.fr/hal-00545768
  • 45B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka.

    Conjugate and cut loci of a two-sphere of revolution with application to optimal control, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 4, pp. 1081–1098.

    http://dx.doi.org/10.1016/j.anihpc.2008.03.010
  • 46B. Bonnard, J.-B. Caillau, E. Trélat.

    Second order optimality conditions in the smooth case and applications in optimal control, in: ESAIM Control Optim. and Calc. Var., 2007, vol. 13, no 2, pp. 206–236.
  • 47B. Bonnard, M. Chyba.

    Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin, 2003, vol. 40, xvi+357 p.
  • 48B. Bonnard, M. Chyba, J. Rouot, D. Takagi, R. Zou.

    Optimal Strokes : a Geometric and Numerical Study of the Copepod Swimmer, January 2016, working paper or preprint.

    https://hal.inria.fr/hal-01162407
  • 49B. Bonnard, M. Claeys, O. Cots, P. Martinon.

    Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, in: Acta Applicandae Mathematicae, February 2015, vol. 135, no 1, pp. pp.5-45. [ DOI : 10.1007/s10440-014-9947-3 ]

    https://hal.inria.fr/hal-00867753
  • 50B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.

    Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, pp. 1957-1969. [ DOI : 10.1109/TAC.2012.2195859 ]

    http://hal.archives-ouvertes.fr/hal-00750032/
  • 51B. Bonnard, H. Henninger, J. Nemcova, J.-B. Pomet.

    Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits, in: Acta Applicandae Math., 2015, vol. 135, no 2, pp. 47-80. [ DOI : 10.1007/s10440-014-9948-2 ]

    https://hal.inria.fr/hal-00918633
  • 52B. Bonnard, A. Jacquemard, M. Chyba, J. Marriott.

    Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, in: Math. Control Relat. Fields (MCRF), 2013, vol. 3, no 4, pp. 397-432. [ DOI : 10.3934/mcrf.2013.3.397 ]

    https://hal.inria.fr/hal-00939495
  • 53B. Bonnard, I. Kupka.

    Théorie des singularités de l'application entrée-sortie et optimalité des trajectoires singulières dans le problème du temps minimal, in: Forum Math., 1993, vol. 5, pp. 111–159.
  • 54B. Bonnard, D. Sugny.

    Optimal Control with Applications in Space and Quantum Dynamics, AIMS Series on Applied Mathematics, AIMS, 2012, vol. 5.
  • 55J.-B. Caillau, O. Cots, J. Gergaud.

    Differential pathfollowing for regular optimal control problems, in: Optim. Methods Softw., 2012, vol. 27, no 2, pp. 177–196.
  • 56J.-B. Caillau, B. Daoud.

    Minimum time control of the restricted three-body problem, in: SIAM J. Control Optim., 2012, vol. 50, no 6, pp. 3178–3202.
  • 57J.-B. Caillau, A. Farrés.

    On local optima in minimum time control of the restricted three-body problem, in: Recent Advances in Celestial and Space Mechanics, Springer, April 2016, vol. Mathematics for Industry, no 23, pp. 209-302. [ DOI : 10.1007/978-3-319-27464-5 ]

    https://hal.archives-ouvertes.fr/hal-01260120
  • 58J.-b. Caillau, J.-B. Pomet, J. Rouot.

    Metric approximation of minimum time control systems , November 2017, working paper or preprint.

    https://hal.inria.fr/hal-01672001
  • 59J.-B. Caillau, C. Royer.

    On the injectivity and nonfocal domains of the ellipsoid of revolution, in: Geometric Control Theory and Sub-Riemannian Geometry, G. Stefani (editor), INdAM series, Springer, 2014, vol. 5, pp. 73-85. [ DOI : 10.1007/978-3-319-02132-4 ]

    https://hal.archives-ouvertes.fr/hal-01315530
  • 60Z. Chen, J.-B. Caillau, Y. Chitour.

    L1-minimization for mechanical systems, in: SIAM J. Control Optim., May 2016, vol. 54, no 3, pp. 1245-1265. [ DOI : 10.1137/15M1013274 ]

    https://hal.archives-ouvertes.fr/hal-01136676
  • 61L. Dell'Elce, J.-B. Caillau, J.-B. Pomet.

    Averaging Optimal Control Systems with Two Fast Variables, May 2018, working paper or preprint.

    https://hal.inria.fr/hal-01793704
  • 62L. Faubourg, J.-B. Pomet.

    Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var., 2000, vol. 5, pp. 293-311. [ DOI : 10.1051/cocv:2000112 ]

    http://www.numdam.org/item/COCV_2000__5__293_0
  • 63A. Figalli, T. Gallouët, L. Rifford.

    On the convexity of injectivity domains on nonfocal manifolds, in: SIAM J. Math. Anal., 2015, vol. 47, no 2, pp. 969–1000. [ DOI : 10.1137/140961821 ]

    https://hal.inria.fr/hal-00968354
  • 64A. Figalli, L. Rifford, C. Villani.

    Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, in: Tohoku Math. J., 2011, vol. 63, no 4, pp. 855-876.

    http://hal.inria.fr/hal-00923320v1
  • 65M. Fliess, J. Lévine, P. Martin, P. Rouchon.

    Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, pp. 1327–1361.
  • 66C. Gavriel, R. Vinter.

    Second order sufficient conditions for optimal control problems with non-unique minimizers: an abstract framework, in: Appl. Math. Optim., 2014, vol. 70, no 3, pp. 411–442.

    http://dx.doi.org/10.1007/s00245-014-9245-5
  • 67Y. Kozai.

    The motion of a close earth satellite, in: The Astronomical Journal, 1959, vol. 64, 367 p.
  • 68R. McCann, L. Rifford.

    The intrinsic dynamics of optimal transport, in: Journal de l'École Polytechnique - Mathématiques, 2016, vol. 3, pp. 67-98. [ DOI : 10.5802/jep.29 ]

    https://hal.archives-ouvertes.fr/hal-01336327
  • 69R. Montgomery.

    A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
  • 70J.-B. Pomet.

    A necessary condition for dynamic equivalence, in: SIAM J. on Control and Optimization, 2009, vol. 48, pp. 925-940. [ DOI : 10.1137/080723351 ]

    http://hal.inria.fr/inria-00277531
  • 71L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.

    Théorie mathématique des processus optimaux, Editions MIR, Moscou, 1974.
  • 72E. M. Purcell.

    Life at low Reynolds number, in: American journal of physics, 1977, vol. 45, no 1, pp. 3–11.
  • 73L. Rifford.

    Stratified semiconcave control-Lyapunov functions and the stabilization problem, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005, vol. 22, no 3, pp. 343–384.

    http://dx.doi.org/10.1016/j.anihpc.2004.07.008
  • 74A. J. Rosengren, D. J. Scheeres.

    On the Milankovitch orbital elements for perturbed Keplerian motion, in: Celestial Mechanics and Dynamical Astronomy, 2014, vol. 118, no 3, pp. 197–220.
  • 75J. A. Sanders, F. Verhulst.

    Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag, 1985, vol. 56.
  • 76A. V. Sarychev.

    The index of second variation of a control system, in: Mat. Sb., 1982, vol. 41, pp. 338–401.
  • 77A. Suarez.

    Analysis and Design of Autonomous Microwave Circuits, Wiley-IEEE Press, 2009.
  • 78D. Takagi.

    Swimming with stiff legs at low Reynolds number, in: Phys. Rev. E, 2015, vol. 92, 023020 p.

    http://link.aps.org/doi/10.1103/PhysRevE.92.023020
  • 79E. Trélat, E. Zuazua.

    The turnpike property in finite-dimensional nonlinear optimal control, in: J. Differential Equations, 2015, vol. 258, no 1, pp. 81–114.

    http://dx.doi.org/10.1016/j.jde.2014.09.005
  • 80R. Vinter.

    Optimal control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., 2000.

    http://dx.doi.org/10.1007/978-0-8176-8086-2