Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1D. Babichev.
On Efficient Methods for High-dimensional Statistical Estimation, PSL Research University, February 2019.
https://hal.archives-ouvertes.fr/tel-02433016 -
2T. Shpakova.
On Parameter Learning for Perturb-and-MAP Models, PSL Research University, February 2019.
https://hal.archives-ouvertes.fr/tel-02431640
Articles in International Peer-Reviewed Journals
-
3P. Askenazy, F. Bach.
IA et emploi : Une menace artificielle, in: Pouvoirs - Revue française d’études constitutionnelles et politiques, September 2019, vol. 170, pp. 1-7.
https://hal.archives-ouvertes.fr/hal-02343633 -
4M. Brégère, P. Gaillard, Y. Goude, G. Stoltz.
Target Tracking for Contextual Bandits: Application to Demand Side Management, in: Proceedings of Machine Learning Research, June 2019, vol. 97, pp. 754-763, https://arxiv.org/abs/1901.09532.
https://hal.archives-ouvertes.fr/hal-01994144 -
5Y. Drori, A. B. Taylor.
Efficient First-order Methods for Convex Minimization: a Constructive Approach, in: Mathematical Programming, Series A, 2019, https://arxiv.org/abs/1803.05676 - Code available at https://github.com/AdrienTaylor/GreedyMethods, forthcoming. [ DOI : 10.1007/s10107-019-01410-2 ]
https://hal.inria.fr/hal-01902048 -
6P. Gaillard, S. Gerchinovitz, M. Huard, G. Stoltz.
Uniform regret bounds over for the sequential linear regression problem with the square loss, in: Proceedings of Machine Learning Research, 2019, vol. 98, pp. 404-432, https://arxiv.org/abs/1805.11386.
https://hal.archives-ouvertes.fr/hal-01802004 -
7J.-L. Peyrot, L. Duval, F. Payan, L. Bouard, L. Chizat, S. Schneider, M. Antonini.
HexaShrink, an exact scalable framework for hexahedral meshes with attributes and discontinuities: multiresolution rendering and storage of geoscience models, in: Computational Geosciences, August 2019, vol. 23, no 4, pp. 723-743, https://arxiv.org/abs/1903.07614. [ DOI : 10.1007/s10596-019-9816-2 ]
https://hal-ifp.archives-ouvertes.fr/hal-01857997 -
8V. Roulet, N. Boumal, A. D'Aspremont.
Computational complexity versus statistical performance on sparse recovery problems, in: Information and Inference, January 2019, https://arxiv.org/abs/1506.03295. [ DOI : 10.1093/imaiai/iay020 ]
https://hal.archives-ouvertes.fr/hal-02340337
International Conferences with Proceedings
-
9A. Bietti, G. Mialon, D. Chen, J. Mairal.
A Kernel Perspective for Regularizing Deep Neural Networks, in: ICML 2019 - 36th International Conference on Machine Learning, Long Beach, United States, Proceedings of Machine Learning Research, June 2019, vol. 97, pp. 664-674, https://arxiv.org/abs/1810.00363.
https://hal.inria.fr/hal-01884632 -
10R. Bollapragada, D. Scieur, A. D'Aspremont.
Nonlinear Acceleration of Momentum and Primal-Dual Algorithms, in: AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, The 22nd International Conference on Artificial Intelligence and Statistics,, April 2019, vol. 89, https://arxiv.org/abs/1810.04539. [ DOI : 10.04539 ]
https://hal.archives-ouvertes.fr/hal-01893921 -
11T. Kerdreux, A. D'Aspremont, S. Pokutta.
Restarting Frank-Wolfe, in: AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, Proceedings of Machine Learning Research, April 2019, vol. 89, https://arxiv.org/abs/1810.02429. [ DOI : 10.02429 ]
https://hal.archives-ouvertes.fr/hal-01893922 -
12U. Marteau-Ferey, F. Bach, A. Rudi.
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses, in: NeurIPS 2019 - Conference on Neural Information Processing Systems, Vancouver, Canada, December 2019, https://arxiv.org/abs/1907.01771.
https://hal.inria.fr/hal-02169626 -
13T. Ryffel, E. Dufour-Sans, R. Gay, F. Bach, D. Pointcheval.
Partially Encrypted Machine Learning using Functional Encryption, in: NeurIPS 2019 - Thirty-third Conference on Neural Information Processing Systems, Vancouver, Canada, Advances in Neural Information Processing Systems, December 2019, https://arxiv.org/abs/1905.10214.
https://hal.inria.fr/hal-02357181 -
14A. Taylor, F. Bach.
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions, in: COLT 2019 - Conference on Learning Theory, Phoenix, United States, June 2019, https://arxiv.org/abs/1902.00947 - 12 pages + appendix; code available at https://github.com/AdrienTaylor/Potential-functions-for-first-order-methods.
https://hal.inria.fr/hal-02009309
Conferences without Proceedings
-
15P. Ablin, A. Gramfort, J.-F. Cardoso, F. Bach.
Stochastic algorithms with descent guarantees for ICA, in: AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, April 2019.
https://hal.archives-ouvertes.fr/hal-02372092 -
16L. Chizat, E. Oyallon, F. Bach.
On Lazy Training in Differentiable Programming, in: NeurIPS 2019 - 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, December 2019, https://arxiv.org/abs/1812.07956.
https://hal.inria.fr/hal-01945578 -
17A. Genevay, L. Chizat, F. Bach, M. Cuturi, G. Peyré.
Sample Complexity of Sinkhorn divergences, in: AISTATS'19 - 22nd International Conference on Artificial Intelligence and Statistics, Okinawa, Japan, K. Chaudhuri, M. Sugiyama (editors), April 2019, https://arxiv.org/abs/1810.02733. [ DOI : 10.02733 ]
https://hal.archives-ouvertes.fr/hal-02411822 -
18R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtárik.
SGD: General Analysis and Improved Rates, in: International Conference on Machine Learning, Los Angeles, United States, June 2019.
https://hal.telecom-paristech.fr/hal-02365318 -
19D. M. Ostrovskii, A. Rudi.
Affine Invariant Covariance Estimation for Heavy-Tailed Distributions, in: COLT 2019 - 32nd Annual Conference on Learning Theory, Phoenix, United States, June 2019, https://arxiv.org/abs/1902.03086.
https://hal.archives-ouvertes.fr/hal-02011464 -
20A. Podosinnikova, A. Perry, A. Wein, F. Bach, A. D'Aspremont, D. Sontag.
Overcomplete Independent Component Analysis via SDP, in: AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, April 2019, https://arxiv.org/abs/1901.08334 - Appears in: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019). 21 pages.
https://hal.archives-ouvertes.fr/hal-02340366
Other Publications
-
21A. Askari, A. D'Aspremont, L. E. Ghaoui.
Naive Feature Selection: Sparsity in Naive Bayes, October 2019, https://arxiv.org/abs/1905.09884 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02340374 -
22D. Babichev, D. M. Ostrovskii, F. Bach.
Efficient Primal-Dual Algorithms for Large-Scale Multiclass Classification, February 2019, https://arxiv.org/abs/1902.03755 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02012569 -
23F. Bach.
Max-Plus Matching Pursuit for Deterministic Markov Decision Processes, June 2019, https://arxiv.org/abs/1906.08524 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02155865 -
24M. Barré, A. D'Aspremont.
Polyak Steps for Adaptive Fast Gradient Method, October 2019, https://arxiv.org/abs/1906.03056 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02340373 -
25R. Berthier, F. Bach, P. Gaillard.
Accelerated Gossip in Networks of Given Dimension using Jacobi Polynomial Iterations, February 2019, https://arxiv.org/abs/1805.08531 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01797016 -
26A. D'Aspremont, M. Cucuringu, H. Tyagi.
Ranking and synchronization from pairwise measurements via SVD, October 2019, https://arxiv.org/abs/1906.02746 - 42 pages, 9 figures.
https://hal.archives-ouvertes.fr/hal-02340372 -
27R.-A. Dragomir, A. D'Aspremont, J. Bolte.
Quartic First-Order Methods for Low Rank Minimization, October 2019, https://arxiv.org/abs/1901.10791 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02340369 -
28R.-A. Dragomir, A. Taylor, A. D'Aspremont, J. Bolte.
Optimal Complexity and Certification of Bregman First-Order Methods, November 2019, https://arxiv.org/abs/1911.08510 - working paper or preprint.
https://hal.inria.fr/hal-02384167 -
29A. Défossez, N. Usunier, L. Bottou, F. Bach.
Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed, September 2019, https://arxiv.org/abs/1909.01174 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02277338 -
30A. Défossez, N. Usunier, L. Bottou, F. Bach.
Music Source Separation in the Waveform Domain, November 2019, https://arxiv.org/abs/1911.13254 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02379796 -
31H. Hendrikx, F. Bach, L. Massoulié.
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums, September 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02280763 -
32R. Jézéquel, P. Gaillard, A. Rudi.
Efficient online learning with kernels for adversarial large scale problems, May 2019, https://arxiv.org/abs/1902.09917 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02019402 -
33U. Marteau-Ferey, D. M. Ostrovskii, F. Bach, A. Rudi.
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance, June 2019, https://arxiv.org/abs/1902.03046 - working paper or preprint.
https://hal.inria.fr/hal-02011895 -
34G. Mialon, A. D'Aspremont, J. Mairal.
Screening Data Points in Empirical Risk Minimization via Ellipsoidal Regions and Safe Loss Functions, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02395624 -
35F.-P. Paty, A. D'Aspremont, M. Cuturi.
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport, October 2019, https://arxiv.org/abs/1905.10812 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02340371 -
36L. Pillaud-Vivien, F. Bach, T. Lelièvre, A. Rudi, G. Stoltz.
Statistical Estimation of the Poincaré constant and Application to Sampling Multimodal Distributions, November 2019, https://arxiv.org/abs/1910.14564 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02327453 -
37T.-H. Vu, A. Osokin, I. Laptev.
Tube-CNN: Modeling temporal evolution of appearance for object detection in video, January 2019, https://arxiv.org/abs/1812.02619 - 13 pages, 8 figures, technical report.
https://hal.archives-ouvertes.fr/hal-01980339