EN FR
EN FR


Section: Overall Objectives

Planetary-Scale Geo-Distributed Systems

Modern large-scale systems often encompass thousands of server nodes, hosted in tens of datacenters distributed over several continents. To address the challenges posed by such systems, alternative distributed architectures are today emerging that emphasize decentralized and loosely coupled interactions. This evolution can be observed at multiple levels of an application's distributed stack: the growing interest, both practical and theoretical, for weak consistency models is such an example. In spite of their potential counter-intuitive behaviors, weakly consistent data-structures allow developers to trade strict coordination guarantees for the ability to deliver a reactive and scalable service even when hit by arbitrary network delays or system partitions. At a higher, more architectural level, similar motivations explain the push for micro-services on the server side of on-line applications and the growth of rich browser-based programming technologies on their client side. Micro services help development teams decompose complex applications into a set of simpler and loosely-connected distributed services. In a parallel evolution, modern browsers embark increasingly powerful networking APIs such as WebRTC. These APIs are prompting a fresh rethink of the typical distribution of capabilities between servers and clients. This is likely to lead to more services and computations being offloaded to browsers, in particular within hybrid architectures. The above evolutions, away from tightly synchronized and monolithic deployments towards heterogeneous, composite and loosely coordinated distributed systems, raise a number of difficult challenges at the crossroad of theoretical distributed algorithms, system architecture, and programming frameworks. One of these challenges pertains to the growing complexity arising from these systems: as richer and more diverse services are being composed to construct whole applications, individual developers can only hope to grasp parts of the resulting systems. Similarly, weak consistency models and loose coordination mechanisms tend to lead to counter-intuitive behaviors, while only providing weak overall guarantees. This lack of systematic guarantees and understandability make it harder for practitioners to design, deploy, and validate the distributed systems they produce, leading to rising costs and high entry barriers.

In order to address these challenges, we argue that modern-day distributed systems require new principled algorithms, approaches, and architectural patterns able to provide sound foundations to their development while guaranteeing robust service guarantees, thus lowering the cost of their development and maintenance, increasing their reliability, and rendering them technically approachable to a wider audience.