Bibliography
Major publications by the team in recent years
-
1G. Aubert, P. Kornprobst.
Mathematical problems in image processing: partial differential equations and the calculus of variations (Second edition), Applied Mathematical Sciences, Springer-Verlag, 2006, vol. 147. -
2B. Cessac.
A discrete time neural network model with spiking neurons II. Dynamics with noise., in: Journal of Mathematical Biology, 2011, vol. 62, no 6, p. 863-900. [ DOI : 10.1007/s00285-010-0358-4 ]
http://lanl. arxiv. org/ pdf/ 1002. 3275 -
3B. Cessac, M. Samuelides.
From neuron to neural networks dynamics., in: EPJ Special topics: Topics in Dynamical Neural Networks, 2007, vol. 142, no 1, p. 7–88. [ DOI : 10.1140/epjst/e2007-00058-2 ]
http://lanl. arxiv. org/ abs/ nlin/ 0609038 -
4O. Faugeras, J. Touboul, B. Cessac.
A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs, in: Frontiers in Computational Neuroscience, 2009, vol. 3, no 1. [ DOI : 10.3389/neuro.10.001.2010 ]
http://www. frontiersin. org/ computational_neuroscience/ 10. 3389/ neuro. 10/ 001. 2009/ abstract -
5F. Grimbert, O. Faugeras.
Bifurcation Analysis of Jansen's Neural Mass Model, in: Neural Computation, December 2006, vol. 18, no 12, p. 3052–3068. -
6E. Tlapale, G. Masson, P. Kornprobst.
Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism, in: Vision Research, August 2010, vol. 50, no 17, p. 1676–1692.
http://dx. doi. org/ 10. 1016/ j. visres. 2010. 05. 022 -
7J. Touboul, O. Faugeras.
The spikes trains probability distributions: a stochastic calculus approach, in: Journal of Physiology, Paris, December 2007, vol. 101/1-3, p. 78–98. -
8J. Touboul, O. Faugeras.
First hitting time of Double Integral Processes to curved boundaries, in: Advances in Applied Probability, 2008, vol. 40, no 2, p. 501–528. -
9J. Touboul.
Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons, in: SIAM Journal on Applied Mathematics, 2008, vol. 68, no 4, p. 1045-1079.
http://link. aip. org/ link/ ?SMM/ 68/ 1045/ 1 -
10A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4.
Doctoral Dissertations and Habilitation Theses
-
11M. Galtier.
A mathematical approach to unsupervised learning in recurrent neural networks, ParisTech, December 2011. -
12H. Rostro-Gonzalez.
Computing with spikes, architecture, properties and implementation of emerging paradigms, EDSTIC, 2011. -
13E. Tlapale.
Modelling the dynamics of contextual motion integration in the primate, Université Nice Sophia Antipolis, January 2011. -
14J.-C. Vasquez.
Analyzing the neural code, mathematical and computational properties of spiking neural networks, EDSTIC, 2011. -
15R. Veltz.
Nonlinear analysis methods in neural field models, Univ Paris Est ED MSTIC, 2011.
Articles in International Peer-Reviewed Journal
-
16J. Bouecke, E. Tlapale, P. Kornprobst, H. Neumann.
Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems, in: EURASIP, special issue on Biologically inspired signal processing: Analysis, algorithms, and applications, 2011, vol. 2011. [ DOI : 10.1155/2011/781561 ]
http://www. hindawi. com/ journals/ asp/ 2011/ 781561. html -
17B. Cessac.
A discrete time neural network model with spiking neurons II. Dynamics with noise., in: Journal of Mathematical Biology, 2011, vol. 62, no 6, p. 863-900. [ DOI : 10.1007/s00285-010-0358-4 ]
http://lanl. arxiv. org/ pdf/ 1002. 3275 -
18B. Cessac.
Statistics of spike trains in conductance-based neural networks: Rigorous results, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 8, p. 1-42. [ DOI : 10.1186/2190-8567-1-8 ]
http://www. mathematical-neuroscience. com/ content/ 1/ 1/ 8 -
19P. Chossat, G. Faye, O. Faugeras.
Bifurcations of hyperbolic planforms, in: Journal of Nonlinear Science, August 2011, vol. 21, no 4, p. 465–498.
http://www. springerlink. com/ content/ l6386p2501x14265/ fulltext. pdf -
20T. Deneux, O. Faugeras, S. Takerkart, G. Masson, I. Vanzetta.
A new variational method for erythrocyte velocity estimation in wide-field imaging in-vivo, in: IEEE TMI, 2011, vol. 30, no 8, p. 1527–1545.
http://dx. doi. org/ 10. 1109/ TMI. 2011. 2131151 -
21G. Faye, P. Chossat, O. Faugeras.
Analysis of a hyperbolic geometric model for visual texture perception, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 4. -
22G. Faye, P. Chossat.
Bifurcation diagrams and heteroclinic networks of octagonal H-planforms, in: Accepted for publication in Journal of Nonlinear Science, 2011.
http://hal. archives-ouvertes. fr/ hal-00587900/ -
23A. Ramirez, M. Rivera, P. Kornprobst, F. Lauze.
Variational multi-valued velocity field estimation for transparent sequences, in: Journal of Mathematical Image and Vision, 2011, vol. 40, no 3, p. 285–304. [ DOI : DOI: 10.1007/s10851-011-0260-8 ]
http://www. springerlink. com/ content/ b8170jl10r87jl10/ -
24H. Rostro-Gonzalez, B. Cessac, B. Girau, C. Torres-Huitzil.
The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks, in: J. Physiol. Paris, 2011, vol. 105, no 1–3, p. 91–97, to appear. [ DOI : 10.1016/j.jphysparis.2011.09.004 ]
http://www. sciencedirect. com/ science/ article/ pii/ S0928425711000301 -
25H. Rostro-Gonzalez, B. Cessac, T. Viéville.
Parameters estimation in spiking neural networks: a reverse-engineering approach, in: J. Neural. Eng., 2011, Accepted. -
26J. Touboul, O. Faugeras.
A Markovian event-based framework for stochastic spiking neural networks, in: Journal of Computational Neuroscience, April 2011, vol. 30.
http://www. springerlink. com/ content/ 81736mn03j2221m7/ fulltext. pdf -
27J. Touboul, F. Wendling, P. Chauvel, O. Faugeras.
Neural Mass Activity, Bifurcations, and Epilepsy, in: Neural Computation, December 2011, vol. 23, no 12, p. 3232–3286. -
28J.-C. Vasquez, A. Palacios, O. Marre, Michael. J. II. Berry, B. Cessac.
Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells, in: J. Physiol. Paris, 2011, to appear.
http://arxiv. org/ abs/ 1112. 2464 -
29R. Veltz, O. Faugeras.
Stability of the stationary solutions of neural field equations with propagation delays, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 1, 1 p.
http://www. mathematical-neuroscience. com/ content/ 1/ 1/ 1 -
30R. Veltz.
An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays, in: Comptes Rendus Mathematique, July 2011, vol. 349, p. 749–752.
Invited Conferences
-
31B. Cessac.
Comportements émergents dans les réseaux de neurones., in: Berder 2011 Coopérativité et singularité en biologie, avril 2011.
http://www. lptl. jussieu. fr/ user/ lesne/ berder2011 -
32B. Cessac.
Neural networks: some results about (i) Spike train statistics ; (ii) Linear response theory., in: Mean-Field methods and multiscale analysis in neuronal populations, r, October 2011.
http://www. cirm. univ-mrs. fr/ index. html/ -
33B. Cessac.
Spike trains statistics and Gibbs distributions, in: "Dynamics of Complex Systems" Closing conference, Cergy, Sept 2011.
http://agm. u-cergy. fr/ dynamicsofcomplexsystems/ finalevent. html -
34B. Cessac.
Statistics of action potentials in neural networks: from experiments to mathematics, in: Stochastic Dynamics in Mathematics, Physics and Engineering, Bielefeld 1-4 November, 2011.
http://www. uni-bielefeld. de/ -
35D. Fasoli, O. Faugeras, J. Touboul.
Chaos propagation in a mean field theory of spiking neural networks, in: Brainscales General Meeting, Barcelona, March 2011. -
36O. Faugeras.
Bridging the gaps between micro/meso/macro levels, in: ANR-NSF Workshop, ANR, Paris, France, November 2011. -
37O. Faugeras.
Connections between mathematics and neuroscience, in: TAMTAM'11, Sousse, Tunisia, April 2011. -
38O. Faugeras.
Mathematics and Neuroscience, in: Computer Vision Day Trip, Universidad de la República, Montevideo, Uruguay, March 2011. -
39O. Faugeras.
Mean field methods in neuroscience, in: EPFL lectures, EPFL, Lausanne, Switzerland, June 2011. -
40O. Faugeras.
Neural Field models of some aspects of visual perception, in: ANR-NSF Workshop, ANR, Paris, France, November 2011. -
41O. Faugeras.
Propagation to chaos and information processing in large assemblies of neurons, in: CNS workshop on Methods of Information Theory in Computational Neuroscience, KTH, Stockholm, Sweden, July 2011. -
42O. Faugeras.
Propagation to chaos and information processing in large assemblies of neurons, in: Mathematical Neuroscience minisymposium, Equadiff 2011, Loughborough University, Loughborough/UK, August 2011. -
43O. Faugeras.
Two or three things I know about mean-field methods for large assemblies of neurons, in: Workshop on Mean-field methods and multiscale analysis of neuronal populations, CIRM, Luminy, France, October 2011. -
44O. Faugeras, R. Veltz.
Constraining the design and operation of neural field models from basic principles, in: Workshop on Spatio-temporal evolution equations and neural fields, October 2011. -
45G. Faye, P. Chossat, O. Faugeras.
Overview of the structure tensor model, in: Brainscales General Meeting, Barcelona, March 2011. -
46G. Hermann, J. Touboul, O. Faugeras.
Noise-induced behaviors in neural mean field equations, in: Brainscales General Meeting, Barcelona, March 2011. -
47R. Veltz, O. Faugeras.
Interplay between constant delays and space dependent delays in neural fields models, in: Brainscales General Meeting, Barcelona, March 2011.
International Conferences with Proceedings
-
48W. Bel Haj Ali, E. Debreuve, P. Kornprobst, M. Barlaud.
Bio-Inspired Bags-of-Features for Image Classification, in: KDIR International Conference on Knowledge Discovery and Information Retrieval, October 2011. -
49M.-J. Escobar, G. Masson, P. Kornprobst.
Can V1 surround suppression mechanism explain MT motion integration?, in: International Conference on Cognitive and Neural Systems (ICCNS), 2011. -
50M.-J. Escobar, G. Masson, P. Kornprobst.
How MT neurons get influenced by V1 surround suppression?, in: Perception ECVP, September 2011. -
51K. Masmoudi, M. Antonini, P. Kornprobst.
A Biologically Inspired Image Coder with Temporal Scalability, in: Advanced Concepts for Intelligent Vision Systems (ACIVS), 2011.
http://acivs. org/ acivs2011/ #bestpaper -
52E. Tlapale, P. Kornprobst, G. Masson, O. Faugeras.
A Neural Field Model for Motion Estimation, in: Mathematical Image Processing, Springer Proceedings in Mathematics, Springer, 2011, vol. 5, p. 159–180.
http://dx. doi. org/ 10. 1007/ 978-3-642-19604-1
Conferences without Proceedings
-
53J. Rankin, E. Tlapale, R. Veltz, P. Kornprobst, O. Faugeras.
Multistability and bifurcations in a model of motion perception, in: Developments in Dynamical Systems Arising from the Biosciences, March 2011.
http://www. mbi. ohio-state. edu/ 2010/ ddsdescription. html
Scientific Books (or Scientific Book chapters)
-
54B. Cessac, A. Palacios.
7, in: "Spike train statistics from empirical facts to theory: the case of the retina" in Mathematical Problems in Computational Biology and Biomedicine, F. Cazals and P. Kornprobst editors., Springer, 2011, submitted.
Internal Reports
-
55J. Baladron, D. Fasoli, O. Faugeras, J. Touboul.
Mean Field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, arXiv, 2011, Submitted to the Journal of Mathematical Neuroscience.
http://arxiv. org/ abs/ 1110. 4294 -
56K. Masmoudi, M. Antonini, P. Kornprobst.
Frames for Exact Inversion of the Rank Order Coder, INRIA Research Report, 2011, no RR-7744.
http://hal. inria. fr/ inria-00627075/ fr/ -
57J. Rankin, E. Tlapale, R. Veltz, O. Faugeras, P. Kornprobst.
Bifurcation analysis applied to a model of motion integration with a multistable stimulus, INRIA Research Report, 2011, no RR-7822. -
58J.-C. Vasquez, T. Viéville, B. Cessac.
Parametric Estimation of Gibbs distributions as generalized maximum-entropy models for the analysis of spike train statistics., INRIA, 2011. -
59J.-C. Vasquez, T. Viéville, B. Cessac.
Parametric Estimation of Gibbs distributions as generalized maximum-entropy models for the analysis of spike train statistics., INRIA, 2011.
http://hal. inria. fr/ inria-00574954/ PDF/ RR-7561. pdf
Other Publications
-
60R. Cofre-Torres.
Statistics of spike trains in conductance-based neural networks: Including Gap-junctions, Master of Computational Biology, 2011. -
61J. Touboul, G. Hermann, O. Faugeras.
Noise-induced behaviors in neural mean field dynamics, 2011, arXiv.
http://arxiv. org/ abs/ 1104. 5425
-
62E. Adelson, J. Bergen.
Spatiotemporal energy models for the perception of motion, in: Journal of the Optical Society of America A, 1985, vol. 2, p. 284–299. -
63J. Baladron, D. Fasoli, O. Faugeras.
Three applications of GPU computing in neuroscience, in: Computing in Science and Engineering, 2012. -
64P. Chossat, O. Faugeras.
Hyperbolic planforms in relation to visual edges and textures perception, in: Plos Comput Biol, December 2009, vol. 5, no 12, e1000625 p.
http://dx. doi. org/ doi:10. 1371/ journal. pcbi. 1000625 -
65M.-J. Escobar.
Bio-Inspired Models for Motion Estimation and Analysis: Human action recognition and motion integration, Université de Nice Sophia-Antipolis, 2009. -
66G. Hermann.
Some mean field equations in neuroscience, Ecole Polytechnique, January 2012. -
67P. Kornprobst, E. Tlapale, J. Bouecke, H. Neumann, G. Masson.
A Bio-Inspired Evaluation Methodology for Motion Estimation, in: VSS, 2010.
http://www-sop. inria. fr/ neuromathcomp/ data/ motionpsychobench/ -
68T. Masquelier.
Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model, in: Journal of Computational Neuroscience, 2011.
http://dx. doi. org/ 10. 1007/ s10827-011-0361-9 -
69E. Tlapale, P. Kornprobst, J. Bouecke, H. Neumann, G. Masson.
Evaluating motion estimation models from behavioural and psychophysical data, in: BIONETICS, 2010. -
70E. Tlapale, P. Kornprobst, J. Bouecke, H. Neumann, G. Masson.
Towards a bio-inspired evaluation methodology for motion estimation models, INRIA, June 2010, no RR-7317.
http://hal. inria. fr/ inria-00492001/ PDF/ RR-7317. pdf -
71E. Tlapale, G. Masson, P. Kornprobst.
Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism, in: Vision Research, August 2010, vol. 50, no 17, p. 1676–1692.
http://dx. doi. org/ 10. 1016/ j. visres. 2010. 05. 022 -
72J. Touboul, G. Hermann, O. Faugeras.
Noise-induced behaviors in neural mean field dynamics, in: SIAM Journal on Applied dynamical Systems, 2012. -
73A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4. -
74A. Wohrer.
Model and large-scale simulator of a biological retina with contrast gain control, University of Nice Sophia-Antipolis, 2008.