EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1G. Aubert, P. Kornprobst.

    Mathematical problems in image processing: partial differential equations and the calculus of variations (Second edition), Applied Mathematical Sciences, Springer-Verlag, 2006, vol. 147.
  • 2B. Cessac.

    A discrete time neural network model with spiking neurons II. Dynamics with noise., in: Journal of Mathematical Biology, 2011, vol. 62, no 6, p. 863-900. [ DOI : 10.1007/s00285-010-0358-4 ]

    http://lanl.arxiv.org/pdf/1002.3275
  • 3B. Cessac, M. Samuelides.

    From neuron to neural networks dynamics., in: EPJ Special topics: Topics in Dynamical Neural Networks, 2007, vol. 142, no 1, p. 7–88. [ DOI : 10.1140/epjst/e2007-00058-2 ]

    http://lanl.arxiv.org/abs/nlin/0609038
  • 4O. Faugeras, J. Touboul, B. Cessac.

    A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs, in: Frontiers in Computational Neuroscience, 2009, vol. 3, no 1. [ DOI : 10.3389/neuro.10.001.2010 ]

    http://www.frontiersin.org/computational_neuroscience/10.3389/neuro.10/001.2009/abstract
  • 5F. Grimbert, O. Faugeras.

    Bifurcation Analysis of Jansen's Neural Mass Model, in: Neural Computation, December 2006, vol. 18, no 12, p. 3052–3068.
  • 6E. Tlapale, G. Masson, P. Kornprobst.

    Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism, in: Vision Research, August 2010, vol. 50, no 17, p. 1676–1692.

    http://dx.doi.org/10.1016/j.visres.2010.05.022
  • 7J. Touboul, O. Faugeras.

    The spikes trains probability distributions: a stochastic calculus approach, in: Journal of Physiology, Paris, December 2007, vol. 101/1-3, p. 78–98.
  • 8J. Touboul, O. Faugeras.

    First hitting time of Double Integral Processes to curved boundaries, in: Advances in Applied Probability, 2008, vol. 40, no 2, p. 501–528.
  • 9J. Touboul.

    Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons, in: SIAM Journal on Applied Mathematics, 2008, vol. 68, no 4, p. 1045-1079.

    http://link.aip.org/link/?SMM/68/1045/1
  • 10A. Wohrer, P. Kornprobst.

    Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4.
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 11M. Galtier.

    A mathematical approach to unsupervised learning in recurrent neural networks, ParisTech, December 2011.
  • 12H. Rostro-Gonzalez.

    Computing with spikes, architecture, properties and implementation of emerging paradigms, EDSTIC, 2011.
  • 13E. Tlapale.

    Modelling the dynamics of contextual motion integration in the primate, Université Nice Sophia Antipolis, January 2011.
  • 14J.-C. Vasquez.

    Analyzing the neural code, mathematical and computational properties of spiking neural networks, EDSTIC, 2011.
  • 15R. Veltz.

    Nonlinear analysis methods in neural field models, Univ Paris Est ED MSTIC, 2011.

Articles in International Peer-Reviewed Journal

  • 16J. Bouecke, E. Tlapale, P. Kornprobst, H. Neumann.

    Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems, in: EURASIP, special issue on Biologically inspired signal processing: Analysis, algorithms, and applications, 2011, vol. 2011. [ DOI : 10.1155/2011/781561 ]

    http://www.hindawi.com/journals/asp/2011/781561.html
  • 17B. Cessac.

    A discrete time neural network model with spiking neurons II. Dynamics with noise., in: Journal of Mathematical Biology, 2011, vol. 62, no 6, p. 863-900. [ DOI : 10.1007/s00285-010-0358-4 ]

    http://lanl.arxiv.org/pdf/1002.3275
  • 18B. Cessac.

    Statistics of spike trains in conductance-based neural networks: Rigorous results, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 8, p. 1-42. [ DOI : 10.1186/2190-8567-1-8 ]

    http://www.mathematical-neuroscience.com/content/1/1/8
  • 19P. Chossat, G. Faye, O. Faugeras.

    Bifurcations of hyperbolic planforms, in: Journal of Nonlinear Science, August 2011, vol. 21, no 4, p. 465–498.

    http://www.springerlink.com/content/l6386p2501x14265/fulltext.pdf
  • 20T. Deneux, O. Faugeras, S. Takerkart, G. Masson, I. Vanzetta.

    A new variational method for erythrocyte velocity estimation in wide-field imaging in-vivo, in: IEEE TMI, 2011, vol. 30, no 8, p. 1527–1545.

    http://dx.doi.org/10.1109/TMI.2011.2131151
  • 21G. Faye, P. Chossat, O. Faugeras.

    Analysis of a hyperbolic geometric model for visual texture perception, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 4.
  • 22G. Faye, P. Chossat.

    Bifurcation diagrams and heteroclinic networks of octagonal H-planforms, in: Accepted for publication in Journal of Nonlinear Science, 2011.

    http://hal.archives-ouvertes.fr/hal-00587900/
  • 23A. Ramirez, M. Rivera, P. Kornprobst, F. Lauze.

    Variational multi-valued velocity field estimation for transparent sequences, in: Journal of Mathematical Image and Vision, 2011, vol. 40, no 3, p. 285–304. [ DOI : DOI: 10.1007/s10851-011-0260-8 ]

    http://www.springerlink.com/content/b8170jl10r87jl10/
  • 24H. Rostro-Gonzalez, B. Cessac, B. Girau, C. Torres-Huitzil.

    The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks, in: J. Physiol. Paris, 2011, vol. 105, no 1–3, p. 91–97, to appear. [ DOI : 10.1016/j.jphysparis.2011.09.004 ]

    http://www.sciencedirect.com/science/article/pii/S0928425711000301
  • 25H. Rostro-Gonzalez, B. Cessac, T. Viéville.

    Parameters estimation in spiking neural networks: a reverse-engineering approach, in: J. Neural. Eng., 2011, Accepted.
  • 26J. Touboul, O. Faugeras.

    A Markovian event-based framework for stochastic spiking neural networks, in: Journal of Computational Neuroscience, April 2011, vol. 30.

    http://www.springerlink.com/content/81736mn03j2221m7/fulltext.pdf
  • 27J. Touboul, F. Wendling, P. Chauvel, O. Faugeras.

    Neural Mass Activity, Bifurcations, and Epilepsy, in: Neural Computation, December 2011, vol. 23, no 12, p. 3232–3286.
  • 28J.-C. Vasquez, A. Palacios, O. Marre, Michael. J. II. Berry, B. Cessac.

    Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells, in: J. Physiol. Paris, 2011, to appear.

    http://arxiv.org/abs/1112.2464
  • 29R. Veltz, O. Faugeras.

    Stability of the stationary solutions of neural field equations with propagation delays, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 1, 1 p.

    http://www.mathematical-neuroscience.com/content/1/1/1
  • 30R. Veltz.

    An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays, in: Comptes Rendus Mathematique, July 2011, vol. 349, p. 749–752.

Invited Conferences

  • 31B. Cessac.

    Comportements émergents dans les réseaux de neurones., in: Berder 2011 Coopérativité et singularité en biologie, avril 2011.

    http://www.lptl.jussieu.fr/user/lesne/berder2011
  • 32B. Cessac.

    Neural networks: some results about (i) Spike train statistics ; (ii) Linear response theory., in: Mean-Field methods and multiscale analysis in neuronal populations, r, October 2011.

    http://www.cirm.univ-mrs.fr/index.html/
  • 33B. Cessac.

    Spike trains statistics and Gibbs distributions, in: "Dynamics of Complex Systems" Closing conference, Cergy, Sept 2011.

    http://agm.u-cergy.fr/dynamicsofcomplexsystems/finalevent.html
  • 34B. Cessac.

    Statistics of action potentials in neural networks: from experiments to mathematics, in: Stochastic Dynamics in Mathematics, Physics and Engineering, Bielefeld 1-4 November, 2011.

    http://www.uni-bielefeld.de/
  • 35D. Fasoli, O. Faugeras, J. Touboul.

    Chaos propagation in a mean field theory of spiking neural networks, in: Brainscales General Meeting, Barcelona, March 2011.
  • 36O. Faugeras.

    Bridging the gaps between micro/meso/macro levels, in: ANR-NSF Workshop, ANR, Paris, France, November 2011.
  • 37O. Faugeras.

    Connections between mathematics and neuroscience, in: TAMTAM'11, Sousse, Tunisia, April 2011.
  • 38O. Faugeras.

    Mathematics and Neuroscience, in: Computer Vision Day Trip, Universidad de la República, Montevideo, Uruguay, March 2011.
  • 39O. Faugeras.

    Mean field methods in neuroscience, in: EPFL lectures, EPFL, Lausanne, Switzerland, June 2011.
  • 40O. Faugeras.

    Neural Field models of some aspects of visual perception, in: ANR-NSF Workshop, ANR, Paris, France, November 2011.
  • 41O. Faugeras.

    Propagation to chaos and information processing in large assemblies of neurons, in: CNS workshop on Methods of Information Theory in Computational Neuroscience, KTH, Stockholm, Sweden, July 2011.
  • 42O. Faugeras.

    Propagation to chaos and information processing in large assemblies of neurons, in: Mathematical Neuroscience minisymposium, Equadiff 2011, Loughborough University, Loughborough/UK, August 2011.
  • 43O. Faugeras.

    Two or three things I know about mean-field methods for large assemblies of neurons, in: Workshop on Mean-field methods and multiscale analysis of neuronal populations, CIRM, Luminy, France, October 2011.
  • 44O. Faugeras, R. Veltz.

    Constraining the design and operation of neural field models from basic principles, in: Workshop on Spatio-temporal evolution equations and neural fields, October 2011.
  • 45G. Faye, P. Chossat, O. Faugeras.

    Overview of the structure tensor model, in: Brainscales General Meeting, Barcelona, March 2011.
  • 46G. Hermann, J. Touboul, O. Faugeras.

    Noise-induced behaviors in neural mean field equations, in: Brainscales General Meeting, Barcelona, March 2011.
  • 47R. Veltz, O. Faugeras.

    Interplay between constant delays and space dependent delays in neural fields models, in: Brainscales General Meeting, Barcelona, March 2011.

International Conferences with Proceedings

  • 48W. Bel Haj Ali, E. Debreuve, P. Kornprobst, M. Barlaud.

    Bio-Inspired Bags-of-Features for Image Classification, in: KDIR International Conference on Knowledge Discovery and Information Retrieval, October 2011.
  • 49M.-J. Escobar, G. Masson, P. Kornprobst.

    Can V1 surround suppression mechanism explain MT motion integration?, in: International Conference on Cognitive and Neural Systems (ICCNS), 2011.
  • 50M.-J. Escobar, G. Masson, P. Kornprobst.

    How MT neurons get influenced by V1 surround suppression?, in: Perception ECVP, September 2011.
  • 51K. Masmoudi, M. Antonini, P. Kornprobst.

    A Biologically Inspired Image Coder with Temporal Scalability, in: Advanced Concepts for Intelligent Vision Systems (ACIVS), 2011.

    http://acivs.org/acivs2011/#bestpaper
  • 52E. Tlapale, P. Kornprobst, G. Masson, O. Faugeras.

    A Neural Field Model for Motion Estimation, in: Mathematical Image Processing, Springer Proceedings in Mathematics, Springer, 2011, vol. 5, p. 159–180.

    http://dx.doi.org/10.1007/978-3-642-19604-1

Conferences without Proceedings

Scientific Books (or Scientific Book chapters)

  • 54B. Cessac, A. Palacios.

    7, in: "Spike train statistics from empirical facts to theory: the case of the retina" in Mathematical Problems in Computational Biology and Biomedicine, F. Cazals and P. Kornprobst editors., Springer, 2011, submitted.

Internal Reports

  • 55J. Baladron, D. Fasoli, O. Faugeras, J. Touboul.

    Mean Field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, arXiv, 2011, Submitted to the Journal of Mathematical Neuroscience.

    http://arxiv.org/abs/1110.4294
  • 56K. Masmoudi, M. Antonini, P. Kornprobst.

    Frames for Exact Inversion of the Rank Order Coder, INRIA Research Report, 2011, no RR-7744.

    http://hal.inria.fr/inria-00627075/fr/
  • 57J. Rankin, E. Tlapale, R. Veltz, O. Faugeras, P. Kornprobst.

    Bifurcation analysis applied to a model of motion integration with a multistable stimulus, INRIA Research Report, 2011, no RR-7822.
  • 58J.-C. Vasquez, T. Viéville, B. Cessac.

    Parametric Estimation of Gibbs distributions as generalized maximum-entropy models for the analysis of spike train statistics., INRIA, 2011.
  • 59J.-C. Vasquez, T. Viéville, B. Cessac.

    Parametric Estimation of Gibbs distributions as generalized maximum-entropy models for the analysis of spike train statistics., INRIA, 2011.

    http://hal.inria.fr/inria-00574954/PDF/RR-7561.pdf

Other Publications

  • 60R. Cofre-Torres.

    Statistics of spike trains in conductance-based neural networks: Including Gap-junctions, Master of Computational Biology, 2011.
  • 61J. Touboul, G. Hermann, O. Faugeras.

    Noise-induced behaviors in neural mean field dynamics, 2011, arXiv.

    http://arxiv.org/abs/1104.5425
References in notes
  • 62E. Adelson, J. Bergen.

    Spatiotemporal energy models for the perception of motion, in: Journal of the Optical Society of America A, 1985, vol. 2, p. 284–299.
  • 63J. Baladron, D. Fasoli, O. Faugeras.

    Three applications of GPU computing in neuroscience, in: Computing in Science and Engineering, 2012.
  • 64P. Chossat, O. Faugeras.

    Hyperbolic planforms in relation to visual edges and textures perception, in: Plos Comput Biol, December 2009, vol. 5, no 12, e1000625 p.

    http://dx.doi.org/doi:10.1371/journal.pcbi.1000625
  • 65M.-J. Escobar.

    Bio-Inspired Models for Motion Estimation and Analysis: Human action recognition and motion integration, Université de Nice Sophia-Antipolis, 2009.
  • 66G. Hermann.

    Some mean field equations in neuroscience, Ecole Polytechnique, January 2012.
  • 67P. Kornprobst, E. Tlapale, J. Bouecke, H. Neumann, G. Masson.

    A Bio-Inspired Evaluation Methodology for Motion Estimation, in: VSS, 2010.

    http://www-sop.inria.fr/neuromathcomp/data/motionpsychobench/
  • 68T. Masquelier.

    Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model, in: Journal of Computational Neuroscience, 2011.

    http://dx.doi.org/10.1007/s10827-011-0361-9
  • 69E. Tlapale, P. Kornprobst, J. Bouecke, H. Neumann, G. Masson.

    Evaluating motion estimation models from behavioural and psychophysical data, in: BIONETICS, 2010.
  • 70E. Tlapale, P. Kornprobst, J. Bouecke, H. Neumann, G. Masson.

    Towards a bio-inspired evaluation methodology for motion estimation models, INRIA, June 2010, no RR-7317.

    http://hal.inria.fr/inria-00492001/PDF/RR-7317.pdf
  • 71E. Tlapale, G. Masson, P. Kornprobst.

    Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism, in: Vision Research, August 2010, vol. 50, no 17, p. 1676–1692.

    http://dx.doi.org/10.1016/j.visres.2010.05.022
  • 72J. Touboul, G. Hermann, O. Faugeras.

    Noise-induced behaviors in neural mean field dynamics, in: SIAM Journal on Applied dynamical Systems, 2012.
  • 73A. Wohrer, P. Kornprobst.

    Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4.
  • 74A. Wohrer.

    Model and large-scale simulator of a biological retina with contrast gain control, University of Nice Sophia-Antipolis, 2008.