EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1P. Aubry, D. Lazard, M. Moreno-Maza.

    On the theories of triangular sets, in: Journal of Symbilic Computation, 1999, vol. 28, p. 105-124.
  • 2P. Aubry, F. Rouillier, M. Safey El Din.

    Real Solving for Positive Dimensional Systems, in: Journal of Symbolic Computation, 2002, vol. 34, no 6, p. 543–560.
  • 3J.-C. Faugère.

    A new efficient algorithm for computing Gröbner bases without reduction to zero F 5 , in: International Symposium on Symbolic and Algebraic Computation Symposium - ISSAC 2002, Villeneuve d'Ascq, France, Jul 2002.
  • 4J.-C. Faugère.

    A New Efficient Algorithm for Computing Gröbner bases (F 4 ), in: Journal of Pure and Applied Algebra, June 1999, vol. 139, no 1-3, p. 61-88.
  • 5J.-C. Faugère, A. Joux.

    Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases, in: CRYPTO 2003, 2003, p. 44-60.
  • 6D. Lazard, F. Rouillier.

    Solving parametric polynomial systems, in: Journal of Symbolic Computation, 2007, vol. 42, p. 636-667.
  • 7M. Safey El Din, E. Schost.

    Polar varieties and computation of one point in each connected component of a smooth real algebraic set, in: International Symposium on Symbolic and Algebraic Computation 2003 - ISSAC'2003, Philadelphie, USA, J. Sendra (editor), ACM Press, aug 2003, p. 224-231.
  • 8D. Wang.

    Elimination Methods, Springer-Verlag, Wien New York, 2001.
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 9L. Bettale.

    Cryptanalyse algébrique : outils et applications, Université Paris 6, 2011.
  • 10Y. Liang.

    Approximate Gröbner Bases, Université Paris 6 and Beihang University, 2011.
  • 11W. Niu.

    Analyse Qualitative des Systèmes Biologiques par des Méthodes Algébriques, Université Paris 6, 2011.

Articles in International Peer-Reviewed Journal

  • 12X. Chen, D. Wang.

    Management of Geometric Knowledge in Textbooks, in: Data and Knowledge Engineering, 2011, p. 1–15, In press.

    http://dx.doi.org/10.1016/j.datak.2011.10.004
  • 13J.-C. Faugère, Y. Liang.

    Artificial discontinuities of single-parametric Gröbner bases, in: Journal of Symbolic Computation, 2011, vol. 46, no 4, p. 459 – 466. [ DOI : 10.1016/j.jsc.2010.11.001 ]

    http://www-salsa.lip6.fr/~jcf/Papers/JSC_LP10.pdf
  • 14J.-C. Faugère, Y. Liang.

    Pivoting in Extended Rings for Computing Approximate Gröbner Bases, in: Mathematics in Computer Science, 2011, vol. 5, p. 179-194. [ DOI : 10.1007/s11786-011-0089-y ]

    http://www-salsa.lip6.fr/~jcf/Papers/MCS2011.pdf
  • 15J.-C. Faugère, D. Lubicz, D. Robert.

    Computing modular correspondences for abelian varieties, in: Journal Of Algebra, 2011, vol. 343, no 1, p. 248 - 277. [ DOI : 10.1016/j.jalgebra.2011.06.031 ]

    http://www-salsa.lip6.fr/~jcf/Papers/JAlgebra2011.pdf
  • 16J.-C. Faugère, M. Safey El Din, P.-J. Spaenlehauer.

    Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity, in: Journal of Symbolic Computation, 2011, vol. 46, no 4, p. 406–437, Available online 4 November 2010. [ DOI : 10.1016/j.jsc.2010.10.014 ]

    http://www-salsa.lip6.fr/~jcf/Papers/JSC_FSS10.pdf
  • 17A. Galligo, A. Poteaux.

    Computing monodromy via continuation methods on random Riemann surfaces, in: Theoretical Computer Science, 2011, vol. 412, no 16, p. 1492–1507, Symbolic and Numerical Algorithms. [ DOI : 10.1016/j.tcs.2010.11.047 ]

    http://www.sciencedirect.com/science/article/B6V1G-51MDSJP-5/2/798a2d9fedcde3f52382391e770e1a5a
  • 18A. Greuet, G. Guo, M. Safey El Din, L. Zhi.

    Global optimization of polynomials restricted to a smooth variety using sums of squares, in: Journal of Symbolic Computation, 2011, p. 1–19, to appear.

    http://www-salsa.lip6.fr/~safey/Articles/sos_vcg_final.pdf
  • 19A. Hashemi, D. Lazard.

    Sharper complexity bounds for zero-dimensional Gröbner bases and polynomial system solving, in: International Journal of Algebra and Computation (IJAC), 2011, vol. 21, p. 703–713.

    http://dx.doi.org/10.1142/S0218196711006364
  • 20H. Hong, M. Safey El Din.

    Variant Quantifier Elimination, in: Journal of Symbolic Computation, 2011, p. 1–24, to appear.

    http://www-salsa.lip6.fr/~safey/Articles/vqe_jsc_final.pdf
  • 21Y. Huang, D. Wang.

    Computing Intersection and Self-intersection Loci of Parametrized Surfaces Using Regular Systems and Gröbner Bases, in: Computer Aided Geometric Design, 2011, vol. 28, no 9, p. 566–581.

    http://dx.doi.org/10.1016/j.cagd.2011.09.002
  • 22X. Li, C. Mou, W. Niu, D. Wang.

    Stability Analysis for Discrete Biological Models Using Algebraic Methods, in: Mathematics in Computer Science, 2011, vol. 5, no 3, p. 247–262.

    http://dx.doi.org/10.1007/s11786-011-0096-z
  • 23D. Lin, J.-C. Faugère, L. Perret, T. Wang.

    On enumeration of polynomial equivalence classes and their application to MPKC, in: Finite Fields and Their Applications, 2011, p. 1–20. [ DOI : doi:10.1016/j.ffa.2011.09.001 ]

    http://www-salsa.lip6.fr/~jcf/Papers/FFA2011.pdf
  • 24A. Poteaux, M. Rybowicz.

    Complexity bounds for the rational Newton-Puiseux algorithm over finite fields, in: Applicable Algebra in Engineering, Communication and Computing, 2011, vol. 22, p. 187–217.

    http://dx.doi.org/10.1007/s00200-011-0144-6
  • 25M. Safey El Din, E. Schost.

    A Baby Steps/Giant Steps Probabilistic Algorithm for Computing Roadmaps in Smooth Bounded Real Hypersurface, in: Discrete and Computational Geometry, 2011, vol. 45, no 1, p. 181–220. [ DOI : 10.1007/s00454-009-9239-2 ]

    http://www-salsa.lip6.fr/~safey/Articles/SaSc09.pdf
  • 26D. Wang.

    Algebraic Analysis of Stability and Bifurcation for Nonlinear Flight Dynamics, in: The Aeronautical Journal, 2011, vol. 115, no 1168, p. 345–349.
  • 27T. Zhao, D. Wang, H. Hong.

    Solution Formulas for Cubic Equations Without or With Constraints, in: Journal of Symbolic Computation, 2011, vol. 46, no 8, p. 904–918.

    http://dx.doi.org/10.1016/j.jsc.2011.02.001

Articles in National Peer-Reviewed Journal

  • 28X. Li, D. Wang.

    Simple Decomposition of Polynomial Sets over Finite Fields (in Chinese), in: Journal of Systems Science and Mathematical Sciences, 2011, p. 1–13, In press.

International Conferences with Proceedings

  • 29M. Albrecht, C. Cid, T. Dulien, J.-C. Faugère, L. Perret.

    Algebraic Precomputations in Differential Cryptanalysis, in: Information Security and Cryptology: 6th International Conference, Inscrypt 2010, Revised Selected Papers, X. Lai, M. Yung, D. Lin (editors), Springer Berlin / Heidelberg, October 2011, vol. 6584, p. 387-403. [ DOI : 10.1007/978-3-642-21518-627 ]

    http://www-salsa.lip6.fr/~jcf/Papers/INSCRYPT2010.pdf
  • 30M. Albrecht, P. Farshim, K. Paterson, G. Watson.

    On Cipher-Dependent Related-Key Attacks in the Ideal Cipher Model, in: Fast Software Encryption 2011, FSE, Lecture Notes in Computer Science, Springer, 2011, p. 1–20.
  • 31M. Albrecht, J.-C. Faugère, P. Farshim, L. Perret.

    Polly Cracker, Revisited, in: Advances in Cryptology Asiacrypt 2011, D. Lee, X. Wang (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, vol. 7073, p. 179–196. [ DOI : 10.1007/978-3-642-25385-010 ]

    http://www-salsa.lip6.fr/~jcf/Papers/Asia2011.pdf
  • 32F. Armknecht, D. Augot, L. Perret, A. Sadeghi.

    On Constructing Homomorphic Encryption Schemes from Coding Theory, in: IMA Int. Conf., 2011, p. 23-40.

    http://dx.doi.org/10.1007/978-3-642-25516-8_3
  • 33L. Bettale, J.-C. Faugère, L. Perret.

    Cryptanalysis of Multivariate and Odd-Characteristic HFE Variants, in: Public Key Cryptography - PKC 2011, D. Catalano, N. Fazio, R. Gennaro, A. Nicolosi (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, vol. 6571, p. 441–458. [ DOI : 10.1007/978-3-642-19379-827 ]

    http://www-salsa.lip6.fr/~jcf/Papers/pkc2011a.pdf
  • 34C. Bouillaguet, J.-C. Faugère, P.-A. Fouque, L. Perret.

    Practical Cryptanalysis of the Identification Scheme Based on the Isomorphism of Polynomial with One Secret Problem, in: Public Key Cryptography - PKC 2011, D. Catalano, N. Fazio, R. Gennaro, A. Nicolosi (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, vol. 6571, p. 473-493. [ DOI : 10.1007/978-3-642-19379-829 ]

    http://www-salsa.lip6.fr/~jcf/Papers/BFFP11.pdf
  • 35X. Chen, Y. Huang, D. Wang.

    On the Design and Implementation of a Geometric Knowledge Base, in: Automated Deduction in Geometry, Berlin Heidelberg, T. Sturm, C. Zengler (editors), Lecture Notes in Artificial Intelligence, Springer-Verlag, 2011, vol. 6301, p. 22–41.

    http://dx.doi.org/10.1007/978-3-642-21046-4_2
  • 36J.-C. Faugère, A. Gauthier-Umaña, L. Perret, J.-P. Tillich.

    A Distinguisher for High Rate McEliece Cryptosystems, in: Information Theory Workshop (ITW), 2011 IEEE, oct. 2011, p. 282 -286. [ DOI : 10.1109/ITW.2011.6089437 ]

    http://www-salsa.lip6.fr/~jcf/Papers/ITW2011.pdf
  • 37J.-C. Faugère, D. Gligoroski, E. Jensen, R. Odegard, L. Perret, S. Johan Knapskog, S. Markovski.

    An Ultra-fast and Provably CMA Resistant Digital Signature Scheme, in: The Third International Conference on Trusted Systems - INTRUST 2011, Y. Moti, C. Liqun, Z. Liehuang (editors), Lecture Notes in Computer Science, Springer Verlag, 2011, p. 1–10.
  • 38J.-C. Faugère, C. Mou.

    Fast Algorithm for Change of Ordering of Zero-dimensional Gröbner Bases with Sparse Multiplication Matrices, in: Proceedings of the 36th international symposium on Symbolic and algebraic computation, New York, NY, USA, ISSAC '11, ACM, 2011, p. 115–122. [ DOI : 10.1145/1993886.1993908 ]

    http://www-salsa.lip6.fr/~jcf/Papers/FM11.pdf
  • 39J.-C. Faugère, L. Perret, C. Petit, G. Renault.

    Improving the Complexity of Index Calculus Algorithms in Elliptic Curves over Binary Field, in: Proceedings of Eurocrypt 2012, Lecture Notes in Computer Science, Springer Verlag, 2012, p. 1–15.
  • 40C. Goyet, J.-C. Faugère, G. Renault.

    Algebraic Side Channel Analysis, in: COSADE'11: The 2nd International Workshop on Constructive Side-Channel Analysis and Secure Design, Fraunhofer SIT, 2011, p. 1–6.
  • 41A. Greuet, M. Safey El Din.

    Deciding reachability of the infimum of a multivariate polynomial, in: ISSAC '11: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, New York, NY, USA, ISSAC '11, ACM, 2011, p. 131–138.

    http://doi.acm.org/10.1145/1993886.1993910
  • 42T. Zhao, D. Wang, H. Hong, P. Aubry.

    Real Solution Formulas of Cubic and Quartic Equations Applied to Generate Dynamic Diagrams with Inequality Constraints, in: SAC 2012: Proceedings of the 27th ACM Symposium on Applied Computing, Riva del Garda/Trento, Italy, ACM Press, March 2012, p. 1–8, In press.

Scientific Books (or Scientific Book chapters)

  • 43Proceedings of the 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2011), IEEE Computer Society, Timisoara, Romania, September 2011, p. 1–400.
  • 44D. Wang, C. Mou, X. Li, J. Yang, M. Jin, Y. Huang.

    Polynomial Algebra (in Chinese), Higher Education Press, 2011, isbn: 9787040316988.
References in notes
  • 45S. Basu, R. Pollack, M.-F. Roy.

    A new algorithm to find a point in every cell defined by a family of polynomials, in: Quantifier elimination and cylindrical algebraic decomposition, Springer-Verlag, 1998.
  • 46B. Buchberger.

    “Groebner bases : an algorithmic method in polynomial ideal theory”, Recent trends in multidimensional systems theory, Reider ed. Bose, 1985.
  • 47B. Buchberger, G.-E. Collins, R. Loos.

    Computer Algebra Symbolic and Algebraic Computation, second edition, Springer-Verlag, 1982.
  • 48G.-E. Collins.

    Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in: Springer Lecture Notes in Computer Science 33, 1975, vol. 33, p. 515-532.
  • 49J.-C. Faugère, P. Gianni, D. Lazard, T. Mora.

    Efficient Computation of Zero-Dimensional Gröbner Basis by Change of Ordering, in: Journal of Symbolic Computation, Oct. 1993, vol. 16, no 4, p. 329–344.
  • 50J.-C. Faugère, F. Levy-dit-Vehel, L. Perret.

    Cryptanalysis of Minrank, in: Advances in Cryptology CRYPTO 2008, Santa-Barbara, USA, D. Wagner (editor), Lecture Notes in Computer Science, Springer-Verlag, 2008, vol. 5157, p. 280–296.
  • 51J.-C. Faugère, L. Perret.

    Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects, in: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lecture Notes in Computer Science, Springer, 2007, vol. 4004, p. 30-47.
  • 52J.-C. Faugère, D. Lazard.

    The Combinatorial Classes of Parallel Manipulators, in: Mechanism and Machine Theory, 1995, vol. 30, p. 765–776.
  • 53J.-C. Faugère, L. Perret.

    Cryptanalysis of 2R - Schemes, in: Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Lecture Notes in Computer Science, Springer, 2007, vol. 4117, p. 357-372.
  • 54P.-A. Fouque, G. Macariorat, L. Perret, J. Stern.

    On the Security of the -IC Signature Scheme, in: Public Key Cryptography, 4th International Workshop on Practice and Theory in Public Key Cryptography, PKC 2008, Lecture Notes in Computer Science, Springer, 2008, vol. 4939, p. 1–17.
  • 55D. Grigor'ev, N. Vorobjov.

    Solving Systems of Polynomial Inequalities in Subexponential Time, in: J. Symbolic Comput., 1988, vol. 5, p. 37–64.
  • 56M. Kalkbrenner.

    Three contributions to elimination theory, Johannes Kepler University, Linz, 1991.
  • 57D. Lazard.

    Resolution of polynomial systems, in: 4th Asian Symposium on Computer Mathematics - ASCM 2000, Chiang Mai, Thailand, Lecture Notes Series on Computing, World Scientific, Dec 2000, vol. 8, p. 1 - 8.
  • 58D. Lazard.

    On the specification for solvers of polynomial systems, in: 5th Asian Symposium on Computers Mathematics -ASCM 2001, Lecture Notes Series in Computing, World Scientific, 2001, vol. 9, p. 66-75.
  • 59D. Lazard.

    Solving Zero - dimensional algebraic systems, in: Journal of Symbolic Computation, 1992, vol. 13, p. 117-132.
  • 60D. Lazard.

    Stewart platforms and Gröbner basis, in: Proceedings of Advances in Robotics Kinematics, Sep 1992, p. 136-142.
  • 61D. Lazard, J.-P. Merlet.

    The (true) Stewart platform has 12 configurations, in: Proc. of IEEE Conference on Robotics and Vision, San Diego, 1994.
  • 62T. Matsumoto, H. Imai.

    Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption, in: Advances in Cryptology: EUROCRYPT 1988, Lecture Notes in Computer Science, Springer-Verlag, 1988, vol. 330, p. 497–506.
  • 63J. Patarin.

    Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of Asymmetric Algorithms, in: Advances in Cryptology: EUROCRYPT 1996, Lecture Notes in Computer Science, Springer-Verlag, 1996, vol. 1070, p. 33-48.
  • 64J.-F. Ritt.

    Differential equations from an algebraic standpoint, in: American Mathematical Society Colloquium Publications, 1932, vol. 14.
  • 65F. Rouillier, M.-F. Roy, M. Safey El Din.

    Finding at least one point in each connected component of a real algebraic set defined by a single equation, in: Journal of Complexity, 2000, vol. 16, p. 716–750.
  • 66F. Rouillier, M. Safey El Din, E. Schost.

    Solving the Birkhoff Interpolation Problem via the Critical Point Method: An Experimental Study, in: Automated Deduction in Geometry - Third International Workshop ADG 2000, Zurich Switzerland, September 2000, Revised Papers, J. Richter-Gebert, D. Wang (editors), Lecture Notes in Artificial Intelligence, Springer, 2001, no 2061, p. 26–40.
  • 67M. Safey El Din, E. Schost.

    Properness defects of projection functions and computation of at least one point in each connected component of a real algebraic set, in: Journal of Discrete and Computational Geometry, sep 2004.
  • 68M. Safey El Din, P. Trébuchet.

    Strong bihomogeneous Bézout theorem and degree bounds for algebraic optimization, INRIA, 2004, no 5071, submitted to Journal of Pure and Applied Algebra.

    http://hal.inria.fr/inria-00071512
  • 69E. Schost.

    Computing Parametric Geometric Resolutions, in: Applicable Algebra in Engineering, Communication and Computing, 2003, vol. 13, no 5, p. 349 - 393.
  • 70D. Wang.

    An Elimination Method for Polynomial Systems, in: Journal of Symbolic Computation, 1993, vol. 16, p. 83–114.
  • 71V. Weispfenning.

    Canonical comprehensive Gröbner bases, in: Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ACM Press, 2002, p. 270–276.

    http://doi.acm.org/10.1145/780506.780541
  • 72V. Weispfenning.

    Comprehensive Gröbner bases, in: Journal of Symbolic Computation, 1992, vol. 14, p. 1–29.
  • 73V. Weispfenning.

    Solving parametric polynomial equations and inequalities by symbolic algorithms, World Scientific, 1995.
  • 74L. Yang, J. Zhang.

    Searching dependency between algebraic equations: an algorithm applied to automated reasoning, in: Artificial intelligence in mathematics, J. Johnson, S. McKee, A. Vella (editors), Oxford University Press, 1994, p. 147–156.