Bibliography
Major publications by the team in recent years
-
1C. Amrouche, N. E. H. Seloula.
Lp-Theory for Vector Potentials and Sobolev's Inequalities for Vector Fields, 2011, 7 pages.
http://hal. inria. fr/ hal-00629127/ en -
2C. Amrouche, N. E. H. Seloula.
Stokes Equations and Elliptic Systems With Non Standard Boundary Conditions, 2011, 8 pages.
http://hal. inria. fr/ hal-00629131/ en -
3R. Becker.
Adaptive Finite Element Methods for incompressible flow problems, in: 16th Int. Conf. on Finite Elements for Flow Problems, München, Germany, November 2011.
http://hal. inria. fr/ hal-00646745/ en -
4R. Becker.
Adaptive Finite Elements for sensitivity computations, in: Workshop on Discretization methods for fluid flows, Marseille, France, September 2011.
http://hal. inria. fr/ hal-00646746/ en -
5R. Becker, M. Braack.
A Finite Element Pressure Gradient Stabilization for the Stokes Equations Based on Local Projections, in: Calcolo, 2001, vol. 38, no 4, p. 173–199. -
6R. Becker, E. Burman, P. Hansbo.
A finite element time relaxation method, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2011, vol. 349, no 5-6, p. 353-356.
http://hal. inria. fr/ hal-00645159/ en -
7R. Becker, E. Burman, P. Hansbo.
A hierarchical NXFEM for fictitious domain simulations, in: International Journal for Numerical Methods in Engineering, 2011, vol. 4-5, p. 549-559.
http://hal. inria. fr/ hal-00645157/ en -
8R. Becker, D. Capatina-Papaghiuc.
Numerical analysis of a matrix-valued transport equation with applications in non-Newtonian flows, in: 7th ICIAM, Vancouver, Canada, November 2011.
http://hal. inria. fr/ hal-00646530/ en -
9R. Becker, D. Capatina-Papaghiuc, D. Graebling, J. Joie.
Nonconforming finite element approximation of the Giesekus model for polymer flows, in: Computers and Fluids, 2011, vol. 46, p. 142 - 147.
http://hal. inria. fr/ hal-00645152/ en -
10R. Becker, D. Capatina-Papaghiuc, D. Graebling, J. Joie.
Robust approximation of Giesekus flow by nonconforming finite elements, in: 16th Int. Conf. on Finite Elements for Flow Problems, Münich, Germany, November 2011.
http://hal. inria. fr/ hal-00646535/ en -
11R. Becker, D. Capatina-Papaghiuc, J. Joie.
Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations, in: Numerical Methods for Partial Differential Equations / Numerical Methods for Partial Differential Equations An International Journal, March 2011, no DOI: 10.1002/num.20671. [ DOI : 10.1002/num.20671 ]
http://hal. inria. fr/ inria-00537872/ en -
12R. Becker, D. Capatina-Papaghiuc, R. Luce.
A posteriori error estimators based on H(div)- reconstruction for diffusion-convection-reaction equation, in: 9th Enumath, Leicester, United Kingdom, November 2011.
http://hal. inria. fr/ hal-00646537/ en -
13R. Becker, D. Capatina-Papaghiuc, R. Luce, D. Trujillo.
A posteriori error estimation for sensitivity analysis in finite element methods, in: 11th US National Congress on Computational Mechanics, Minneapolis, United States, November 2011.
http://hal. inria. fr/ hal-00646533/ en -
14R. Becker, K. Gokpi, É. Schall, D. Trujillo.
A posteriori error estimators for grid adaptation with Galerkin discontinuous finite element method, in: 8th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Pointe Aux Piments, Mauritius, November 2011.
http://hal. inria. fr/ hal-00646856/ en -
15R. Becker, K. Gokpi, É. Schall, D. Trujillo.
Comparison of two types of a posteriori error estimators on mesh adaptation in discontinuous Galerkin finite elements methods, in: 4th European Conference for Aerospace Sciences (EUCASS), St. Petersburg, Russian Federation, November 2011.
http://hal. inria. fr/ hal-00646853/ en -
16R. Becker, S. Mao.
Quasi-optimality of adaptive non-conforming finite element methods for the Stokes equations, in: SIAM Journal on Numerical Analysis, 2011, vol. 49, no 3, p. 970-991.
http://hal. inria. fr/ hal-00645150/ en -
17R. Becker, R. Rannacher.
An Optimal Control Approach to A-Posteriori Error Estimation, in: Acta Numerica 2001, A. Iserles (editor), Cambridege University Press, 2001, p. 1–102. -
18R. Becker, R. Rannacher.
A feed-back approach to error control in finite element methods: Basic analysis and examples, in: East-West J. Numer. Math., 1996, vol. 4, p. 237–264. -
19R. Becker, D. Trujillo.
A remark on the optimality of adaptive finite element methods, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2011, vol. 349, p. 225-228.
http://hal. inria. fr/ hal-00645158/ en -
20R. Becker, D. Trujillo.
Concepts of the finite element library Concha, in: Monografias Matematicas Garcia de Galdeano, December 2011, vol. 35, p. 59-67.
http://hal. inria. fr/ hal-00649001/ en -
21R. Becker, D. Trujillo, E. Estecahandy.
Weighted marking for goal-oriented adaptive finite element methods, in: SIAM Journal on Numerical Analysis, 2011.
http://hal. inria. fr/ hal-00647356/ en -
22R. Becker, B. Vexler.
Mesh Refinement and Numerical Sensitivity Analysis for Parameter Calibration of Partial Differential Equations, in: J. Comput. Phys., 2005, vol. 206, no 1, p. 95-110. -
23R. Becker, S. Mao, Z.-C. Shi.
A convergent adaptive finite element method with optimal complexity, in: Electronic Transactions on Numerical Analysis, 2008.
http://hal. inria. fr/ inria-00343020/ en/ -
24D. Braess, R. Hoppe, J. Schoberl.
A A posteriori estimators for obstacle problems by the hypercircle method, in: Comput. Vis. Sci., 2008, vol. 11, no 4-6, p. 351-362. -
25D. Capatina-Papaghiuc, N. Barrau.
Numerical simulation of anisothermal flows of Newtonian fluids, in: Monografias Matematicas Garcia de Galdeano, 2011, vol. 35, p. 37-46.
http://hal. inria. fr/ hal-00646561/ en -
26D. Capatina-Papaghiuc.
A positivity preserving discontinuous Galerkin method with applications in polymer flows, in: Int. Conf. " Mathematical Fluid Mechanics and Biomedical Applications", Ponta Delgada, Portugal, November 2011.
http://hal. inria. fr/ hal-00646529/ en -
27D. Capatina-Papaghiuc.
Analyse de méthodes mixtes d'éléments finis en mécanique, Université de Pau et des Pays de l'Adour, November 2011, Habilitation à Diriger des Recherches.
http://hal. inria. fr/ tel-00647026/ en -
28D. Capatina-Papaghiuc.
Numerical analysis of a Riccati type matrix transport equation, in: 7th Workshop "Variational Multiscale Methods", Glasgow, United Kingdom, November 2011.
http://hal. inria. fr/ hal-00646527/ en -
29D. Capatina-Papaghiuc, J.-M. Thomas.
Nonconforming finite element methods without numerical locking., in: Numer. Math., 1998, vol. 81, no 2, p. 163-186. -
30M. Li, R. Becker, S. Mao.
A remark on supercloseness and extrapolation of the quadrilateral han element for the stokes equations, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2011, vol. 349, no 17-18, p. 1017 - 1020.
http://hal. inria. fr/ hal-00645148/ en -
31R. Luce, B. Wohlmuth.
A local a posteriori error estimator based on equilibrated fluxes., in: SIAM J. Numer. Anal., 2004, vol. 42, no 4, p. 1394-1414. -
32E. Schall, C. Viozat, B. Koobus, A. Dervieux.
Computation of low Mach thermical flows with implicit upwind methods., in: Int. J. Heat Mass Transfer, 2003, vol. 46, no 20, p. 3909-3926. -
33J.-M. Thomas, D. Trujillo.
Mixed finite volume methods., in: Int. J. Numer. Methods Engrg., 1999, vol. 46, no 9, p. 1351-1366. -
34C. Xiong, Y. Li.
A posteriori error estimators for optimal distributed control governed by the first-order linear hyperbolic equation: DG method, in: Numerical Methods for Partial Differential Equations, 2011, vol. 27, no 3, p. 491-506.
http://hal. inria. fr/ hal-00646952/ en -
35C. Xiong, Y. Li.
Error analysis for optimal control problem governed by convection diffusion equations: DG method, in: Journal of Computational and Applied Mathematics, 2011, vol. 235, no 10, p. 3163-3177.
http://hal. inria. fr/ hal-00646954/ en
Articles in International Peer-Reviewed Journals
-
36R. Becker, D. Capatina-Papaghiuc, J. Joie.
Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations, in: Numerical Methods for Partial Differential Equations / Numerical Methods for Partial Differential Equations An International Journal, 2012, vol. 28, no 3, p. 1013-1041. [ DOI : 10.1002/num.20671 ]
http://hal. inria. fr/ inria-00537872 -
37R. Becker, K. Gokpi, E. Schall, D. Trujillo.
Comparison of hierarchical and non-hierarchical error indicators for adaptive mesh refinement for the Euler equations, in: Journal of Aerospace Engineering, 2012.
http://hal. inria. fr/ hal-00766918 -
38R. Becker, K. Gokpi, É. Schall, D. Trujillo.
Fully implicit adaptive method using discontinuous Galerkin finite elements for high speed flows, in: Int. J. Aerodynamics, 2012, vol. 2.
http://hal. inria. fr/ hal-00766915 -
39R. Becker, D. Trujillo.
Concepts of the Finite Element Library Concha, in: Monografias Matematica, 2012, p. 59-67.
http://hal. inria. fr/ hal-00766922 -
40D. Capatina-Papaghiuc, N. Barrau.
Numerical simulation of anisothermal flows of Newtonian fluids, in: Monografias Matematicas Garcia de Galdeano, 2012, vol. 35, p. 37-46.
http://hal. inria. fr/ hal-00646561
International Conferences with Proceedings
-
41N. Barrau, D. Capatina-Papaghiuc.
Numerical simulation of anisothermal flows of Newtonian fluids, in: 11th International Conference Zaragoza-Pau on Applied Mathematics and Statistics, Jaca, Spain, Prensas Univ. Zaragoza, Zaragoza, 2012, vol. 37, p. 37-46.
http://hal. inria. fr/ inria-00539640 -
42R. Becker, D. Capatina-Papaghiuc, R. Luce.
A unified approach to build robust H(div)-reconstructed estimators on primal mesh, in: ECCOMAS., Vienne, Austria, 2012.
http://hal. inria. fr/ hal-00766876
-
43D. Arnold.
An interior penalty finite element method with discontinuous elements, in: SIAM J. Numer. Anal., 1982, vol. 19, p. 742-760. -
44G. Baker.
Finite element methods for elliptic equations using nonconforming elements, in: Math. Comp., 1977, vol. 31, p. 45-59. -
45F. Bassi, S. Rebay.
High-order accurate discontinuous finite element solution of the 2D Euler equations, in: J. Comput. Phys., 1997, vol. 138, no 2, p. 251–285. -
46R. Becker, E. Burman, P. Hansbo.
A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, in: Comput. Methods Appl. Mech. Engrg., 2009, vol. 198, no 41-44, p. 3352-3360.
http://hal. inria. fr/ inria-00437190/ en/ -
47R. Becker, E. Burman, P. Hansbo.
A hierarchical nxfem for fictitious domain simulations, in: Int. J. Numer. Meth. Engng, 2010, to appear.
http://hal. inria. fr/ inria-00539171/ en -
48R. Becker, P. Hansbo.
A simple pressure stabilization method for the Stokes equation, in: Comm. Numer. Methods Eng., 2008, vol. 24, no 11, p. 1421-1430. -
49R. Becker, C. Johnson, R. Rannacher.
Adaptive Error Control for Multigrid Finite Element Methods, in: Computing, 1995, vol. 55, p. 271-288. -
50R. Becker, S. Mao.
An optimally convergent adaptive mixed finite element method, in: Numer. Math., 2008, vol. 111, no 1, p. 35-54. -
51R. Becker, S. Mao.
Convergence and quasi-optimal complexity of a simple adaptive finite element method, in: M2AN, 2009, vol. 43, p. 1203–1219.
http://dx. doi. org/ 10. 1051/ m2an/ 2009036 -
52R. Becker, R. Rannacher.
Weighted a posteriori error control in FE methods, in: ENUMATH'97, H. G. Bock, et al. (editors), World Sci. Publ., Singapore, 1995. -
53R. Becker, S. Mao, Z. Shi.
A convergent nonconforming adaptive finite element method with optimal complexity, in: SIAM Journal on Numerical Analysis, 2010, vol. 47, p. 4639–4659.
http://hal. inria. fr/ inria-00438541/ en/ -
54P. Binev, W. Dahmen, R. DeVore.
Adaptive finite element methods with convergence rates., in: Numer. Math., 2004, vol. 97, no 2, p. 219-268. -
55M. Braack, E. Burman.
Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method, in: SIAM J. Numer. Anal., 2006, vol. 43, no 6, p. 2544-2566. -
56D. Braess, R. Hoppe, J. Schoberl.
A A posteriori estimators for obstacle problems by the hypercircle method, in: Comput. Vis. Sci., 2008, vol. 11, no 4-6, p. 351-362. -
57A. Brooks, T. Hughes.
Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations., in: Comput. Methods Appl. Mech. Comput. Methods Appl. Mech. Engrg., 1982, vol. 32, p. 199-259. -
58E. Burman, M. A. Fernández.
Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis, in: SIAM J. Numer. Anal., 2008, vol. 47, no 1, p. 409–439.
http://dx. doi. org/ 10. 1137/ 070707403 -
59E. Burman, P. Hansbo.
Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems., in: Comput. Methods Appl. Mech. Engrg., 2004, vol. 193, no 15-16, p. 1437-1453. -
60E. Dubach, R. Luce, J. Thomas.
Pseudo-conform polynomial Lagrange finite elements on quadrilaterals and hexahedra., in: Comm. Pure Appl. Anal., 2009, vol. 8, p. 237-254.
http://hal. inria. fr/ inria-00438537/ en/ -
61E. Dubach, R. Luce, J. Thomas.
Pseudo-conforming polynomial finite element on quadrilaterals, in: Int. J. Comput. Math., 2009, vol. 80, no 10-11, p. 1798-1816.
http://hal. inria. fr/ inria-00438536/ en/ -
62J.-L. Guermond.
Stabilization of Galerkin approximations of transport equations by subgrid modeling, in: Modél. Math. Anal. Numér., 1999, vol. 33, no 6, p. 1293-1316. -
63A. Hansbo, P. Hansbo.
An unfitted finite element method, based on Nitsche's method, for elliptic interface problems, in: Comp. Methods Appl. Mech. Engrg. in Applied Mechanics and Engineering, 2002, vol. 191, no 47-48, p. 537-5552. -
64A. Hansbo, P. Hansbo.
A finite element method for the simulation of strong and weak discontinuities in solid mechanics., in: Comput. Methods Appl. Mech. Eng., 2004, vol. 193, no 33-35, p. 3523-3540. -
65M. A. Hulsen, R. Fattal, R. Kupferman.
Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, in: Journal of Non-Newtonian Fluid Mechanics, 2005, vol. 127, no 1, p. 27–39.
http://www. sciencedirect. com/ science/ article/ B6TGV-4G53W93-1/ 2/ fe0f91e467f09e43fa76f6896404184b -
66C. Johnson, J. Pitkäranta.
An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, in: Math. Comp., 1986, vol. 46, p. 1-26. -
67C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws., in: Math. Comp., 1990, vol. 54, no 189, p. 107-129. -
68P. Lesaint, P. Raviart.
On a finite element method for solving the Neutron transport equation, in: Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor (editor), Academic Press, New York, 1974. -
69P. Morin, R. H. Nochetto, K. G. Siebert.
Data oscillation and convergence of adaptive FEM., in: SIAM J. Numer. Anal., 2000, vol. 38, no 2, p. 466-488. -
70M. Schäfer, S. Turek.
Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), in: Flow Simulation with High-Performance Computers II. DFG priority research program results 1993-1995, E. Hirschel (editor), Notes Numer. Fluid Mech., Vieweg, Wiesbaden, 1996, no 52, p. 547-566. -
71R. Stevenson.
Optimality of a standard adaptive finite element method, in: Found. Comput. Math., 2007, vol. 7, no 2, p. 245-269.