EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1A. A. Agrachev, D. Barilari, U. Boscain.

    On the Hausdorff volume in sub-Riemannian geometry, in: Calculus of Variations and Partial Differential Equations, 2012, vol. 43, no 3-4, p. 355–388.

    http://dx.doi.org/10.1007/s00526-011-0414-y
  • 2A. Ajami, J.-P. Gauthier, T. Maillot, U. Serres.

    How humans fly, in: ESAIM: Control, Optimisation and Calculus of Variations, 2013.
  • 3D. Barilari, U. Boscain, J.-P. Gauthier.

    On 2-step, corank 2, nilpotent sub-Riemannian metrics, in: SIAM J. Control Optim., 2012, vol. 50, no 1, p. 559–582.

    http://dx.doi.org/10.1137/110835700
  • 4D. Barilari, L. Rizzi.

    A formula for Popp's volume in sub-Riemannian geometry, in: Analysis and Geometry in Metric Spaces, 2013.

    http://arxiv.org/pdf/1211.2325v1.pdf
  • 5N. Boizot, J.-P. Gauthier.

    Motion Planning for Kinematic Systems, in: IEEE Transaction on Automatic Control, 2013.
  • 6N. Boizot, J.-P. Gauthier.

    On the motion planning of the ball with a trailer, in: Math. control and related fields, 2013.
  • 7U. Boscain, M. Caponigro, T. Chambrion, M. Sigalotti.

    A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, in: Comm. Math. Phys., 2012, vol. 311, no 2, p. 423–455.

    http://dx.doi.org/10.1007/s00220-012-1441-z
  • 8U. Boscain, F. Chittaro, P. Mason, M. Sigalotti.

    Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues, in: IEEE Trans. Automat. Control, 2012, vol. 57, p. 1970–1983.
  • 9U. Boscain, C. Laurent.

    The Laplace–Beltrami operator in almost-Riemannian geometry, in: Ann. Inst. Fourier, 2013.
  • 10Y. Chitour, F. Jean, R. Long.

    A global steering method for nonholonomic systems, in: Journal of Differential Equations, 2013.

    http://dx.doi.org/10.1016/j.jde.2012.11.012
  • 11Y. Chitour, F. Jean, P. Mason.

    Optimal control models of goal-oriented human locomotion, in: SIAM J. Control Optim., 2012, vol. 50, no 1, p. 147–170.

    http://dx.doi.org/10.1137/100799344
  • 12Y. Chitour, P. Mason, M. Sigalotti.

    On the marginal instability of linear switched systems, in: Systems & Control Letters, 2012, vol. 61, no 6, p. 747–757.

    http://dx.doi.org/10.1016/j.sysconle.2012.04.005
  • 13F. El Hachemi, M. Sigalotti, J. Daafouz.

    Stability analysis of singularly perturbed switched linear systems, in: IEEE Trans. Automat. Control, 2012, vol. 57, p. 2116–2121.
  • 14F. Hante, M. Sigalotti, M. Tucsnak.

    On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping, in: Journal of Differential Equations, May 2012, vol. 252, no 10, p. 5569-5593. [ DOI : 10.1016/j.jde.2012.01.037 ]

    http://hal.inria.fr/inria-00616474

International Conferences with Proceedings

  • 15A. Ajami, J.-F. Balmat, J.-P. Gauthier, T. Maillot.

    Path Planning and Ground Control Station Simulator for UAV, in: Proceedings of the 2013 IEEE aerospace conference, 2013.
  • 16U. Boscain, M. Caponigro, M. Sigalotti.

    Controllability of the bilinear Schrödinger equation with several controls and application to a 3D molecule, in: Proceedings of the 51th IEEE Conference on Decision and Control, 2012.
  • 17U. Boscain, R. Duits, F. Rossi, Y. Sachkov.

    Curve cuspless reconstruction via sub-Riemannian geometry, in: Proceedings of the 51th IEEE Conference on Decision and Control, 2012.

    http://arxiv.org/abs/1203.3089
  • 18U. Boscain, F. Grönberg, R. Long, H. Rabitz.

    Time minimal trajectories for two-level quantum systems with two bounded controls, in: Proceedings of the 51th IEEE Conference on Decision and Control, 2012.

    http://arxiv.org/abs/1211.0666
  • 19F. Chittaro, P. Mason, U. Boscain, M. Sigalotti.

    Controllability of the Schroedinger equation via adiabatic methods and conical intersections of the eigenvalues, in: Proceedings of the 51th IEEE Conference on Decision and Control, 2012.

Scientific Popularization

  • 20M. Lapert, Y. Zhang, M. Janich, S. J. Glaser, D. Sugny.

    Une nouvelle métode pour optimiser le contraste en imagerie médicale, in: Actualités scientifiques du CNRS, 2012.

Other Publications

References in notes
  • 25A. A. Agrachev, T. Chambrion.

    An estimation of the controllability time for single-input systems on compact Lie groups, in: ESAIM Control Optim. Calc. Var., 2006, vol. 12, no 3, p. 409–441.
  • 26A. A. Agrachev, D. Liberzon.

    Lie-algebraic stability criteria for switched systems, in: SIAM J. Control Optim., 2001, vol. 40, no 1, p. 253–269.

    http://dx.doi.org/10.1137/S0363012999365704
  • 27A. A. Agrachev, Y. L. Sachkov.

    Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
  • 28A. A. Agrachev, A. V. Sarychev.

    Navier-Stokes equations: controllability by means of low modes forcing, in: J. Math. Fluid Mech., 2005, vol. 7, no 1, p. 108–152.

    http://dx.doi.org/10.1007/s00021-004-0110-1
  • 29F. Albertini, D. D'Alessandro.

    Notions of controllability for bilinear multilevel quantum systems, in: IEEE Trans. Automat. Control, 2003, vol. 48, no 8, p. 1399–1403.
  • 30C. Altafini.

    Controllability properties for finite dimensional quantum Markovian master equations, in: J. Math. Phys., 2003, vol. 44, no 6, p. 2357–2372.
  • 31L. Ambrosio, P. Tilli.

    Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, vol. 25, viii+133 p.
  • 32G. Arechavaleta, J.-P. Laumond, H. Hicheur, A. Berthoz.

    An optimality principle governing human locomotion, in: IEEE Trans. on Robotics, 2008, vol. 24, no 1.
  • 33L. Baudouin.

    A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, in: Port. Math. (N.S.), 2006, vol. 63, no 3, p. 293–325.
  • 34L. Baudouin, O. Kavian, J.-P. Puel.

    Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, in: J. Differential Equations, 2005, vol. 216, no 1, p. 188–222.
  • 35L. Baudouin, J. Salomon.

    Constructive solution of a bilinear optimal control problem for a Schrödinger equation, in: Systems Control Lett., 2008, vol. 57, no 6, p. 453–464.

    http://dx.doi.org/10.1016/j.sysconle.2007.11.002
  • 36K. Beauchard.

    Local controllability of a 1-D Schrödinger equation, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 7, p. 851–956.
  • 37K. Beauchard, J.-M. Coron.

    Controllability of a quantum particle in a moving potential well, in: J. Funct. Anal., 2006, vol. 232, no 2, p. 328–389.
  • 38M. Belhadj, J. Salomon, G. Turinici.

    A stable toolkit method in quantum control, in: J. Phys. A, 2008, vol. 41, no 36, 362001, 10 p.

    http://dx.doi.org/10.1088/1751-8113/41/36/362001
  • 39F. Blanchini.

    Nonquadratic Lyapunov functions for robust control, in: Automatica J. IFAC, 1995, vol. 31, no 3, p. 451–461.

    http://dx.doi.org/10.1016/0005-1098(94)00133-4
  • 40F. Blanchini, S. Miani.

    A new class of universal Lyapunov functions for the control of uncertain linear systems, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 3, p. 641–647.

    http://dx.doi.org/10.1109/9.751368
  • 41A. M. Bloch, R. W. Brockett, C. Rangan.

    Finite Controllability of Infinite-Dimensional Quantum Systems, in: IEEE Trans. Automat. Control, 2010.
  • 42V. D. Blondel, J. Theys, A. A. Vladimirov.

    An elementary counterexample to the finiteness conjecture, in: SIAM J. Matrix Anal. Appl., 2003, vol. 24, no 4, p. 963–970.

    http://dx.doi.org/10.1137/S0895479801397846
  • 43A. Bonfiglioli, E. Lanconelli, F. Uguzzoni.

    Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 p.
  • 44B. Bonnard, D. Sugny.

    Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim., 2009, vol. 48, no 3, p. 1289–1308.

    http://dx.doi.org/10.1137/080717043
  • 45A. Borzì, E. Decker.

    Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, in: J. Comput. Appl. Math., 2006, vol. 193, no 1, p. 65–88.
  • 46A. Borzì, U. Hohenester.

    Multigrid optimization schemes for solving Bose-Einstein condensate control problems, in: SIAM J. Sci. Comput., 2008, vol. 30, no 1, p. 441–462.

    http://dx.doi.org/10.1137/070686135
  • 47U. Boscain.

    Stability of planar switched systems: the linear single input case, in: SIAM J. Control Optim., 2002, vol. 41, no 1, p. 89–112.

    http://dx.doi.org/10.1137/S0363012900382837
  • 48C. Brif, R. Chakrabarti, H. Rabitz.

    Control of quantum phenomena: Past, present, and future, Advances in Chemical Physics, S. A. Rice (ed), Wiley, New York, 2010.
  • 49F. Bullo, A. D. Lewis.

    Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-Verlag, New York, 2005, vol. 49, xxiv+726 p, Modeling, analysis, and design for simple mechanical control systems.
  • 50R. Cabrera, H. Rabitz.

    The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement, in: J. Phys. A, 2009, vol. 42, no 27, 275303, 9 p.

    http://dx.doi.org/10.1088/1751-8113/42/27/275303
  • 51G. Citti, A. Sarti.

    A cortical based model of perceptual completion in the roto-translation space, in: J. Math. Imaging Vision, 2006, vol. 24, no 3, p. 307–326.

    http://dx.doi.org/10.1007/s10851-005-3630-2
  • 52J.-M. Coron.

    Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, vol. 136, xiv+426 p.
  • 53W. P. Dayawansa, C. F. Martin.

    A converse Lyapunov theorem for a class of dynamical systems which undergo switching, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 4, p. 751–760.

    http://dx.doi.org/10.1109/9.754812
  • 54L. El Ghaoui, S.-I. Niculescu.

    Robust decision problems in engineering: a linear matrix inequality approach, in: Advances in linear matrix inequality methods in control, Philadelphia, PA, Adv. Des. Control, SIAM, Philadelphia, PA, 2000, vol. 2, p. xviii, 3–37.
  • 55S. Ervedoza, J.-P. Puel.

    Approximate controllability for a system of Schrödinger equations modeling a single trapped ion, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, p. 2111–2136.
  • 56M. Fliess, J. Lévine, P. Martin, P. Rouchon.

    Flatness and defect of non-linear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, no 6, p. 1327–1361.

    http://dx.doi.org/10.1080/00207179508921959
  • 57B. Franchi, R. Serapioni, F. Serra Cassano.

    Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, in: Comm. Anal. Geom., 2003, vol. 11, no 5, p. 909–944.
  • 58M. Gugat.

    Optimal switching boundary control of a string to rest in finite time, in: ZAMM Z. Angew. Math. Mech., 2008, vol. 88, no 4, p. 283–305.
  • 59J. Hespanha, S. Morse.

    Stability of switched systems with average dwell-time, in: Proceedings of the 38th IEEE Conference on Decision and Control, CDC 1999, Phoenix, AZ, USA, 1999, p. 2655–2660.
  • 60D. Hubel, T. Wiesel.

    Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford University Press, Oxford, 2004.
  • 61R. Illner, H. Lange, H. Teismann.

    Limitations on the control of Schrödinger equations, in: ESAIM Control Optim. Calc. Var., 2006, vol. 12, no 4, p. 615–635.

    http://dx.doi.org/10.1051/cocv:2006014
  • 62A. Isidori.

    Nonlinear control systems, Communications and Control Engineering Series, Second, Springer-Verlag, Berlin, 1989, xii+479 p, An introduction.
  • 63K. Ito, K. Kunisch.

    Optimal bilinear control of an abstract Schrödinger equation, in: SIAM J. Control Optim., 2007, vol. 46, no 1, p. 274–287.
  • 64K. Ito, K. Kunisch.

    Asymptotic properties of feedback solutions for a class of quantum control problems, in: SIAM J. Control Optim., 2009, vol. 48, no 4, p. 2323–2343.

    http://dx.doi.org/10.1137/080720784
  • 65F. Jean, G. Oriolo, M. Vendittelli.

    A Globally Convergent Steering Algorithm for Regular Nonholonomic Systems, in: Proceedings of 44th IEEE CDC-ECC'05, Sevilla, Spain, 2005.
  • 66R. Kalman.

    When is a linear control system optimal?, in: ASME Transactions, Journal of Basic Engineering, 1964, vol. 86, p. 51–60.
  • 67N. Khaneja, S. J. Glaser, R. W. Brockett.

    Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, in: Phys. Rev. A (3), 2002, vol. 65, no 3, part A, 032301, 11 p.
  • 68N. Khaneja, B. Luy, S. J. Glaser.

    Boundary of quantum evolution under decoherence, in: Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no 23, p. 13162–13166.

    http://dx.doi.org/10.1073/pnas.2134111100
  • 69V. S. Kozyakin.

    Algebraic unsolvability of a problem on the absolute stability of desynchronized systems, in: Avtomat. i Telemekh., 1990, p. 41–47.
  • 70G. Lafferriere, H. J. Sussmann.

    A differential geometry approach to motion planning, in: Nonholonomic Motion Planning (Z. Li and J. F. Canny, editors), Kluwer Academic Publishers, 1993, p. 235-270.
  • 71J.-S. Li, N. Khaneja.

    Ensemble control of Bloch equations, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 3, p. 528–536.

    http://dx.doi.org/10.1109/TAC.2009.2012983
  • 72D. Liberzon, J. P. Hespanha, A. S. Morse.

    Stability of switched systems: a Lie-algebraic condition, in: Systems Control Lett., 1999, vol. 37, no 3, p. 117–122.

    http://dx.doi.org/10.1016/S0167-6911(99)00012-2
  • 73D. Liberzon.

    Switching in systems and control, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2003, xiv+233 p.
  • 74H. Lin, P. J. Antsaklis.

    Stability and stabilizability of switched linear systems: a survey of recent results, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 2, p. 308–322.

    http://dx.doi.org/10.1109/TAC.2008.2012009
  • 75Y. Lin, E. D. Sontag, Y. Wang.

    A smooth converse Lyapunov theorem for robust stability, in: SIAM J. Control Optim., 1996, vol. 34, no 1, p. 124–160.

    http://dx.doi.org/10.1137/S0363012993259981
  • 76W. Liu.

    Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in: SIAM J. Control Optim., 1997, vol. 35, no 6, p. 1989–2020.

    http://dx.doi.org/10.1137/S0363012994268667
  • 77Y. Maday, J. Salomon, G. Turinici.

    Monotonic parareal control for quantum systems, in: SIAM J. Numer. Anal., 2007, vol. 45, no 6, p. 2468–2482.

    http://dx.doi.org/10.1137/050647086
  • 78A. N. Michel, Y. Sun, A. P. Molchanov.

    Stability analysis of discountinuous dynamical systems determined by semigroups, in: IEEE Trans. Automat. Control, 2005, vol. 50, no 9, p. 1277–1290.

    http://dx.doi.org/10.1109/TAC.2005.854582
  • 79M. Mirrahimi.

    Lyapunov control of a particle in a finite quantum potential well, in: Proceedings of the 45th IEEE Conference on Decision and Control, 2006.
  • 80M. Mirrahimi, P. Rouchon.

    Controllability of quantum harmonic oscillators, in: IEEE Trans. Automat. Control, 2004, vol. 49, no 5, p. 745–747.
  • 81A. P. Molchanov, Y. S. Pyatnitskiy.

    Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, in: Systems Control Lett., 1989, vol. 13, no 1, p. 59–64.

    http://dx.doi.org/10.1016/0167-6911(89)90021-2
  • 82R. Montgomery.

    A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
  • 83R. M. Murray, S. S. Sastry.

    Nonholonomic motion planning: steering using sinusoids, in: IEEE Trans. Automat. Control, 1993, vol. 38, no 5, p. 700–716.

    http://dx.doi.org/10.1109/9.277235
  • 84V. Nersesyan.

    Growth of Sobolev norms and controllability of the Schrödinger equation, in: Comm. Math. Phys., 2009, vol. 290, no 1, p. 371–387.
  • 85A. Y. Ng, S. Russell.

    Algorithms for Inverse Reinforcement Learning, in: Proc. 17th International Conf. on Machine Learning, 2000, p. 663–670.
  • 86J. Petitot.

    Neurogéomètrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Les Éditions de l'École Polythecnique, 2008.
  • 87J. Petitot, Y. Tondut.

    Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in: Math. Inform. Sci. Humaines, 1999, no 145, p. 5–101.
  • 88H. Rabitz, H. de Vivie-Riedle, R. Motzkus, K. Kompa.

    Wither the future of controlling quantum phenomena?, in: SCIENCE, 2000, vol. 288, p. 824–828.
  • 89D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio.

    Decoherence by engineered quantum baths, in: J. Phys. A, 2007, vol. 40, no 28, p. 8033–8040.

    http://dx.doi.org/10.1088/1751-8113/40/28/S12
  • 90P. Rouchon.

    Control of a quantum particle in a moving potential well, in: Lagrangian and Hamiltonian methods for nonlinear control 2003, Laxenburg, IFAC, Laxenburg, 2003, p. 287–290.
  • 91A. Sasane.

    Stability of switching infinite-dimensional systems, in: Automatica J. IFAC, 2005, vol. 41, no 1, p. 75–78.

    http://dx.doi.org/10.1016/j.automatica.2004.07.013
  • 92A. Saurabh, M. H. Falk, M. B. Alexandre.

    Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions, in: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, December 9-11, 2008, Cancún, Mexico, 2008, p. 2081–2086.
  • 93M. Shapiro, P. Brumer.

    Principles of the Quantum Control of Molecular Processes, Principles of the Quantum Control of Molecular Processes, pp. 250. Wiley-VCH, February 2003.
  • 94R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King.

    Stability criteria for switched and hybrid systems, in: SIAM Rev., 2007, vol. 49, no 4, p. 545–592.

    http://dx.doi.org/10.1137/05063516X
  • 95H. J. Sussmann.

    A continuation method for nonholonomic path finding, in: Proceedings of the 32th IEEE Conference on Decision and Control, CDC 1993, Piscataway, NJ, USA, 1993, p. 2718–2723.
  • 96E. Todorov.

    12, in: Optimal control theory, Bayesian Brain: Probabilistic Approaches to Neural Coding, Doya K (ed), 2006, p. 269–298.
  • 97G. Turinici.

    On the controllability of bilinear quantum systems, in: Mathematical models and methods for ab initio Quantum Chemistry, M. Defranceschi, C. Le Bris (editors), Lecture Notes in Chemistry, Springer, 2000, vol. 74.
  • 98L. Yatsenko, S. Guérin, H. Jauslin.

    Topology of adiabatic passage, in: Phys. Rev. A, 2002, vol. 65, 043407, 7 p.
  • 99E. Zuazua.

    Switching controls, in: Journal of the European Mathematical Society, 2011, vol. 13, no 1, p. 85–117.