Bibliography
Major publications by the team in recent years
-
1P. Balança.
A increment type set-indexed Markov property, 2012.
http://arxiv. org/ abs/ 1207. 6568 -
2J. Barral, J. Lévy-Véhel.
Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments, in: Electronic Journal of Probability, 2004, vol. 9, p. 508–543. -
3O. Barrière, J. Lévy-Véhel.
Application of the Self Regulating Multifractional Process to cardiac interbeats intervals, in: J. Soc. Fr. Stat., 2009, vol. 150, no 1, p. 54–72. -
4F. Chalot, Q. V. Dinh, E. Herbin, L. Martin, M. Ravachol, G. Rogé.
Estimation of the impact of geometrical uncertainties on aerodynamic coefficients using CFD, in: 10th AIAA Non-Deterministic Approaches, Schaumburg, USA, April 2008. -
5K. Daoudi, J. Lévy-Véhel, Y. Meyer.
Construction of continuous functions with prescribed local regularity, in: Journal of Constructive Approximation, 1998, vol. 014, no 03, p. 349–385. -
6Y. Deremaux, J. Négrier, N. Piétremont, E. Herbin, M. Ravachol.
Environmental MDO and uncertainty hybrid approach applied to a supersonic business jet, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization conference, 2008, Victoria. -
7A. Echelard, O. Barrière, J. Lévy-Véhel.
Terrain modelling with multifractional Brownian motion and self-regulating processes, in: ICCVG 2010, Warsaw, Poland, Lecture Notes in Computer Science, Springer, 2010, vol. 6374, p. 342-351.
http://hal. inria. fr/ inria-00538907/ en -
8K. Falconer, R. Le Guével, J. Lévy-Véhel.
Localisable moving average stable and multistable processes, in: Stoch. Models, 2009, vol. 25, p. 648–672. -
9K. Falconer, J. Lévy-Véhel.
Multifractional, multistable, and other processes with prescribed local form, in: J. Theoret. Probab., 2008, vol. 119, p. 2277–2311, DOI 10.1007/s10959-008-0147-9. -
10L. Fermin, J. Lévy-Véhel.
Modeling patient poor compliance in in the multi-IV administration case with Piecewise Deterministic Markov Models, 2011, preprint. -
11L. Fermin, J. Lévy-Véhel.
Variability and singularity arising from poor compliance in a pharmacodynamical model II: the multi-oral case, 2011, preprint. -
12E. Herbin, B. Arras, G. Barruel.
From almost sure local regularity to almost sure Hausdorff dimension for Gaussian fields, 2010, preprint. -
13E. Herbin.
From n parameter fractional brownian motions to n parameter multifractional brownian motions, in: Rocky Mountain Journal of Mathematics, 2006, vol. 36, no 4, p. 1249–1284. -
14E. Herbin, J. Jakubowski, M. Ravachol, Q. V. Dinh.
Management of uncertainties at the level of global design, in: Symposium "Computational Uncertainties", RTO AVT-147, 2007, Athens. -
15E. Herbin, J. Lebovits, J. Lévy-Véhel.
Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motion, in: preprint, 2011. -
16E. Herbin, J. Lévy-Véhel.
Stochastic 2-microlocal analysis, in: Stochastic Proc. Appl., 2009, vol. 119, no 7, p. 2277–2311.
http://arxiv. org/ abs/ math. PR/ 0504551 -
17E. Herbin, E. Merzbach.
A characterization of the set-indexed fractional Brownian motion, in: C. R. Acad. Sci. Paris, 2006, vol. Ser. I 343, p. 767–772. -
18E. Herbin, E. Merzbach.
A set-indexed fractional brownian motion, in: J. of theor. probab., 2006, vol. 19, no 2, p. 337–364. -
19E. Herbin, E. Merzbach.
The multiparameter fractional Brownian motion, in: Math everywhere, Berlin, Springer, Berlin, 2007, p. 93–101.
http://dx. doi. org/ 10. 1007/ 978-3-540-44446-6_8 -
20E. Herbin, E. Merzbach.
Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion, in: J. of theor. probab., 2009, vol. 22, no 4, p. 1010–1029. -
21E. Herbin, E. Merzbach.
The set-indexed Lévy process: Stationarity, Markov and sample paths properties, 2010, preprint. -
22E. Herbin, A. Richard.
Hölder regularity for set-indexed processes, in: Submitted, 2011, submitted. -
23K. Kolwankar, J. Lévy-Véhel.
A time domain characterization of the fine local regularity of functions, in: J. Fourier Anal. Appl., 2002, vol. 8, no 4, p. 319–334. -
24J. Lebovits, J. Lévy-Véhel.
Stochastic Calculus with respect to multifractional Brownian motion, submitted.
http://hal. inria. fr/ inria-00580196/ en -
25J. Lévy-Véhel, M. Rams.
Large Deviation Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments, submitted.
http://hal. inria. fr/ inria-00633195/ en -
26J. Lévy-Véhel, C. Tricot.
On various multifractal spectra, in: Fractal Geometry and Stochastics III, Progress in Probability, Birkhäuser, ISBN 376437070X, 9783764370701, 2004, vol. 57, p. 23-42, C. Bandt, U. Mosco and M. Zähle (Eds), Birkhäuser Verlag. -
27J. Lévy-Véhel, R. Vojak.
Multifractal Analysis of Choquet Capacities: Preliminary Results, in: Advances in Applied Mathematics, January 1998, vol. 20, p. 1–43. -
28R. Peltier, J. Lévy-Véhel.
Multifractional Brownian Motion, Inria, 1995, no 2645.
http://hal. inria. fr/ inria-00074045 -
29M. Ravachol, Y. Deremaux, Q. V. Dinh, E. Herbin.
Uncertainties at the conceptual stage: Multilevel multidisciplinary design and optimization approach, in: 26th International Congress of the Aeronautical Sciences, 2008, Anchorage. -
30F. Roueff, J. Lévy-Véhel.
A Regularization Approach to Fractional Dimension Estimation, in: Fractals'98, 1998, Malta. -
31S. Seuret, J. Lévy-Véhel.
A time domain characterization of of 2-microlocal Spaces, in: J. Fourier Anal. Appl., 2003, vol. 9, no 5, p. 472–495.
Articles in International Peer-Reviewed Journals
-
32P. Balança, E. Herbin.
A set-indexed Ornstein-Uhlenbeck process, in: Electronic Communications in Probability, 2012, vol. 17, no 39, p. 1-14, 13 pages. [ DOI : 10.1214/ECP.v17-1903 ]
http://hal. inria. fr/ hal-00734421 -
33P. Balança, E. Herbin.
2-microlocal analysis of martingales and stochastic integrals, in: Stochastic Processes and their Applications, 2012, vol. 122, p. 2346-2382, 40 pages, 3 figures. [ DOI : 10.1016/j.spa.2012.03.011 ]
http://hal. inria. fr/ hal-00734418 -
34S. Corlay, J. Lebovits, J. Lévy-Véhel.
Multifractional Stochastic volatility models, in: Mathematical Finance, September 2012, Accepted for Publication.
http://hal. inria. fr/ hal-00653150 -
35R. Le Guével, J. Lévy-Véhel.
A Ferguson - Klass - LePage series representation of multistable multifractional processes and related processes, in: Bernoulli, 2012, vol. 18, no 4, p. 1099-1127. [ DOI : 10.3150/11-BEJ372 ]
http://hal. inria. fr/ inria-00538985 -
36J. Lévy-Véhel, F. Mendivil.
Local complex dimensions of a fractal string, in: International Journal of mathematical modelling and numerical optimisation, October 2012, vol. 3, no 4.
http://hal. inria. fr/ inria-00614665 -
37L. Trujillo, P. Legrand, G. Olague, J. Lévy-Véhel.
Evolving Estimators of the Pointwise Holder Exponent with Genetic Programming, in: Information Sciences, 2012, vol. 209, p. 61-79, Submitted. [ DOI : 10.1016/j.ins.2012.04.043 ]
http://hal. inria. fr/ hal-00643387
International Conferences with Proceedings
-
38A. Echelard, J. Lévy-Véhel.
Self-regulating processes-based modelling for arrhythmia characterization, in: Imaging and Signal Processing in Health Care and Technology, Baltimore, United States, May 2012.
http://hal. inria. fr/ hal-00670064
Conferences without Proceedings
-
40A. Echelard, J. Lévy-Véhel, C. Tricot.
A Unified Framework for the Study of the 2-microlocal and Large Deviation Multifractal Spectra, in: Self similar processes and their applications, Angers, France, SMF, 2012, p. 13-44.
http://hal. inria. fr/ inria-00612342
Other Publications
-
41B. Arras.
On a class of self-similar processes with stationary increments in higher order Wiener chaoses, 2012, 21 pages.
http://hal. inria. fr/ hal-00759165 -
42O. Barrière, A. Echelard, J. Lévy-Véhel.
Self-Regulating Processes, To appear in the Electronic Journal of Probability.
http://hal. inria. fr/ hal-00749742 -
43R. Le Guével, J. Lévy-Véhel, L. Liu.
On two multistable extensions of stable Lévy motion and their semimartingale representation.
http://hal. inria. fr/ hal-00730680 -
44P.-E. Lévy-Véhel, J. Lévy-Véhel.
Variability and singularity arising from poor compliance in a pharmacokinetic model I: the multi-IV case, To appear in Journal of Pharmacokinetics and Pharmacodynamics..
http://hal. inria. fr/ hal-00752114 -
45J. Lévy-Véhel, F. Mendivil.
Christiane's Hair, To appear in the American Mathematical Monthly.
http://hal. inria. fr/ hal-00744268
-
46A. Ayache, Y. Xiao.
Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets, in: J. Fourier Anal. Appl., 2005, vol. 11, no 4, p. 407–439.
http://dx. doi. org/ 10. 1007/ s00041-005-4048-3 -
47F. Baccelli, D. Hong.
AIMD, Fairness and Fractal Scaling of TCP Traffic, in: INFOCOM'02, June 2002. -
48R. M. Balan, G. Ivanoff.
A Markov property for set-indexed processes, in: J. Theoret. Probab., 2002, vol. 15, no 3, p. 553–588.
http://dx. doi. org/ 10. 1023/ A:1016296330187 -
49A. Benassi, S. Jaffard, D. Roux.
Elliptic Gaussian random processes, in: Rev. Mathemàtica Iberoamericana, 1997, vol. 13, no 1, p. 19–90. -
50J. Bony.
Second microlocalization and propagation of singularities for semilinear hyperbolic equations, in: Conf. on Hyperbolic Equations and Related Topics, 1984, p. 11–49, Kata/Kyoto,Academic Press, Boston. -
51G. Brown, G. Michon, J. Peyrière.
On the multifractal analysis of measures, in: J. Statist. Phys., 1992, vol. 66, no 3, p. 775–790. -
52D. Cacuci.
Sensitivity and Uncertainty Analysis, Volume 1: Theory., Chapman & Hall/CRC, 2003. -
53R. Cairoli.
Une classe de processus de Markov, in: C. R. Acad. Sci. Paris Sér. A-B, 1971, vol. 273, p. A1071–A1074. -
54A. Carbery, J. Wright.
Distributional and norm inequalities for polynomials over convex bodies in , in: Math. Res. Lett., 2001, vol. 8, no 3, p. 233–248. -
55F. Comte, E. Renault.
Long memory in continuous-time stochastic volatility models, in: Mathematical Finance, 1998, vol. 8, no 4, p. 291–323.
http://dx. doi. org/ 10. 1111/ 1467-9965. 00057 -
56M. Davis.
Markov Models and Optimization, Chapman & Hall, London, 1993. -
57J. Doob.
Stochastic Processes, Wiley, 1953. -
58 ESReDA.
Uncertainty in Industrial Practice, a Guide to Quantitative Uncertainty Management, Wiley, 2009. -
59K. Falconer.
The local structure of random processes, in: J. London Math. Soc., 2003, vol. 2, no 67, p. 657–672. -
60K. Falconer.
The multifractal spectrum of statistically self-similar measures, in: J. Theor. Prob., 1994, vol. 7, p. 681–702. -
61A. Goldberger, L. A. N. Amaral, J. Hausdorff, P. Ivanov, C. Peng, H. Stanley.
Fractal dynamics in physiology: Alterations with disease and aging, in: PNAS, 2002, vol. 99, p. 2466–2472. -
62G. Ivanoff, E. Merzbach.
Set-Indexed Martingales, Chapman & Hall/CRC, 2000. -
63P. Ivanov, L. A. N. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, H. Stanley.
Multifractality in human heartbeat dynamics, in: Nature, June 1999, vol. 399. -
64S. Jaffard.
Pointwise smoothness, two-microlocalization and wavelet coefficients, in: Publ. Mat., 1991, vol. 35, no 1, p. 155–168. -
65S. Jaffard.
The multifractal nature of Lévy processes, in: Probab. Theory Related Fields, 1999, vol. 114, no 2, p. 207–227.
http://dx. doi. org/ 10. 1007/ s004400050224 -
66H. Kempka.
2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability, in: Rev. Mat. Complut., 2009, vol. 22, no 1, p. 227–251. -
67D. Khoshnevisan.
Multiparameter Processes: an introduction to random fields, Springer, 2002. -
68D. Khoshnevisan.
Multiparameter processes: An Introduction to Random Fields, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002, xx+584 p. -
69J. Lamperti.
Semi-stable stochastic processes, in: Trans. Am. Math. Soc., 1962, vol. 104, p. 62-78. -
70J. Li, F. Nekka.
A Pharmacokinetic Formalism Explicitly Integrating the Patient Drug Compliance, in: J. Pharmacokinet. Pharmacodyn., 2007, vol. 34, no 1, p. 115–139. -
71J. Li, F. Nekka.
A probabilistic approach for the evaluation of pharmacological effect induced by patient irregular drug intake, in: J. Pharmacokinet. Pharmacodyn., 2009, vol. 36, no 3, p. 221–238. -
72M. B. Marcus, J. Rosen.
Markov Processes, Gaussian Processes and Local Times, Cambridge University Press, 2006. -
73T. Mori, H. Oodaira.
The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals, in: Probab. Theory Relat. Fields, 1986, vol. 71, no 3, p. 367–391.
http://dx. doi. org/ 10. 1007/ BF01000212 -
74G. Samorodnitsky, M. Taqqu.
Stable Non-Gaussian Random Processes, Chapman and Hall, 1994. -
75S. Stoev, M. Taqqu.
Stochastic properties of the linear multifractional stable motion, in: Adv. Appl. Probab., 2004, vol. 36, p. 1085–1115. -
76B. Vrijens, J. Urquhart.
New findings about patient adherence to prescribed drug dosing regimens: an introduction to pharmionics, in: Eur. J. Hosp. Pharm. Sci., 2005, vol. 11, no 5, p. 103–106. -
77B. Vrijens, J. Urquhart.
Patient adherence to prescribed antimicrobial drug dosing regimens, in: J. Antimicrob. Chemother., 2005, vol. 55, p. 616–627. -
78Y. Xiao, H. Lin.
Dimension properties of sample paths of self-similar processes, in: Acta Math. Sinica (N.S.), 1994, vol. 10, no 3, p. 289–300, A Chinese summary appears in Acta Math. Sinica 38 (1995), no. 4, 576.