EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1U. Boscain, G. Charlot, R. Ghezzi.

    Normal forms and invariants for 2-dimensional almost-Riemannian structures, in: Differential Geometry and its Applications, 2013, vol. 31, no 1, pp. 41-62.

    http://hal.inria.fr/hal-00924474
  • 2Y. Chitour, G. Mazanti, M. Sigalotti.

    Stabilization of two-dimensional persistently excited linear control systems with arbitrary rate of convergence, in: SIAM Journal on Control and Optimization, 2013, vol. 51, pp. 801-823.

    http://hal.inria.fr/inria-00610345
  • 3F. Chittaro, F. Jean, P. Mason.

    On the inverse optimal control problems of the human locomotion: stability and robustness of the minimizers, in: Journal of Mathematical Sciences, December 2013, vol. 195, no 3, pp. 269-287.

    http://hal.inria.fr/hal-00774720

International Conferences with Proceedings

  • 4U. Boscain, M. Caponigro, M. Sigalotti.

    Controllability of the bilinear Schrödinger equation with several controls and application to a 3D molecule, in: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, United States, February 2013, pp. 3038-3043. [ DOI : 10.1109/CDC.2012.6426289 ]

    http://hal.inria.fr/hal-00691706
  • 5U. Boscain, T. Chambrion, M. Sigalotti.

    On some open questions in bilinear quantum control, in: European Control Conference (ECC), Zurich, Switzerland, 2013, pp. 2080-2085.

    http://hal.inria.fr/hal-00818216
  • 6U. Boscain, P. Mason, G. Panati, M. Sigalotti.

    On the control of spin-boson systems, in: European Control Conference, zurich, Switzerland, 2013, pp. 2110-2115.

    http://hal.inria.fr/hal-00923624
  • 7F. El Hachemi, M. Sigalotti, J. Daafouz.

    Sampling of singularly perturbed switched linear systems, in: 52nd IEEE Conference on Decision and Control, CDC 2013, Florence, Italy, December 2013.

    http://hal.inria.fr/hal-00877284
  • 8F. Jean, P. Mason, F. Chittaro.

    Geometric modeling of the movement based on an inverse optimal control approach, in: 52nd IEEE Conference on Decision and Control, Florence, Italy, December 2013, pp. 1816-1821.

    http://hal.inria.fr/hal-00925297
  • 9F. Méhats, Y. Privat, M. Sigalotti.

    Shape dependent controllability of a quantum transistor, in: IEEE Conference on Decision and Control, Florence, Italy, 2013, pp. 1253-1258.

    http://hal.inria.fr/hal-00923631
  • 10P. Nilsson, U. Boscain, M. Sigalotti, J. Newling.

    Invariant sets of defocused switched systems, in: IEEE Conference on Decision and Control, Florence, Italy, 2013, pp. 5987-5992.

    http://hal.inria.fr/hal-00923634

Scientific Books (or Scientific Book chapters)

  • 11Y. Chitour, G. Mazanti, M. Sigalotti.

    Stabilization of persistently excited linear systems, in: Hybrid Systems with Constraints, Wiley-ISTE, 2013, pp. 85-120.

    http://hal.inria.fr/hal-00923619
  • 12J. Daafouz, S. Tarbouriech, M. Sigalotti.

    Hybrid systems with constraints, Wiley-ISTE, May 2013, 263 p. [ DOI : 10.1002/9781118639856 ]

    http://hal.inria.fr/hal-00831446
  • 13G. Stefani, U. Boscain, J.-P. Gauthier, A. Sarychev, M. Sigalotti.

    Geometric Control Theory and sub-Riemannian Geometry, Springer, 2014, 372 p.

    http://hal.inria.fr/hal-00923636

Other Publications

References in notes
  • 27A. A. Agrachev, T. Chambrion.

    An estimation of the controllability time for single-input systems on compact Lie groups, in: ESAIM Control Optim. Calc. Var., 2006, vol. 12, no 3, pp. 409–441.
  • 28A. A. Agrachev, D. Liberzon.

    Lie-algebraic stability criteria for switched systems, in: SIAM J. Control Optim., 2001, vol. 40, no 1, pp. 253–269.

    http://dx.doi.org/10.1137/S0363012999365704
  • 29A. A. Agrachev, Y. L. Sachkov.

    Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
  • 30A. A. Agrachev, A. V. Sarychev.

    Navier-Stokes equations: controllability by means of low modes forcing, in: J. Math. Fluid Mech., 2005, vol. 7, no 1, pp. 108–152.

    http://dx.doi.org/10.1007/s00021-004-0110-1
  • 31F. Albertini, D. D'Alessandro.

    Notions of controllability for bilinear multilevel quantum systems, in: IEEE Trans. Automat. Control, 2003, vol. 48, no 8, pp. 1399–1403.
  • 32C. Altafini.

    Controllability properties for finite dimensional quantum Markovian master equations, in: J. Math. Phys., 2003, vol. 44, no 6, pp. 2357–2372.
  • 33L. Ambrosio, P. Tilli.

    Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, vol. 25, viii+133 p.
  • 34G. Arechavaleta, J.-P. Laumond, H. Hicheur, A. Berthoz.

    An optimality principle governing human locomotion, in: IEEE Trans. on Robotics, 2008, vol. 24, no 1.
  • 35L. Baudouin.

    A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, in: Port. Math. (N.S.), 2006, vol. 63, no 3, pp. 293–325.
  • 36L. Baudouin, O. Kavian, J.-P. Puel.

    Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, in: J. Differential Equations, 2005, vol. 216, no 1, pp. 188–222.
  • 37L. Baudouin, J. Salomon.

    Constructive solution of a bilinear optimal control problem for a Schrödinger equation, in: Systems Control Lett., 2008, vol. 57, no 6, pp. 453–464.

    http://dx.doi.org/10.1016/j.sysconle.2007.11.002
  • 38K. Beauchard.

    Local controllability of a 1-D Schrödinger equation, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 7, pp. 851–956.
  • 39K. Beauchard, J.-M. Coron.

    Controllability of a quantum particle in a moving potential well, in: J. Funct. Anal., 2006, vol. 232, no 2, pp. 328–389.
  • 40M. Belhadj, J. Salomon, G. Turinici.

    A stable toolkit method in quantum control, in: J. Phys. A, 2008, vol. 41, no 36, 362001, 10 p.

    http://dx.doi.org/10.1088/1751-8113/41/36/362001
  • 41F. Blanchini.

    Nonquadratic Lyapunov functions for robust control, in: Automatica J. IFAC, 1995, vol. 31, no 3, pp. 451–461.

    http://dx.doi.org/10.1016/0005-1098(94)00133-4
  • 42F. Blanchini, S. Miani.

    A new class of universal Lyapunov functions for the control of uncertain linear systems, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 3, pp. 641–647.

    http://dx.doi.org/10.1109/9.751368
  • 43A. M. Bloch, R. W. Brockett, C. Rangan.

    Finite Controllability of Infinite-Dimensional Quantum Systems, in: IEEE Trans. Automat. Control, 2010.
  • 44V. D. Blondel, J. Theys, A. A. Vladimirov.

    An elementary counterexample to the finiteness conjecture, in: SIAM J. Matrix Anal. Appl., 2003, vol. 24, no 4, pp. 963–970.

    http://dx.doi.org/10.1137/S0895479801397846
  • 45A. Bonfiglioli, E. Lanconelli, F. Uguzzoni.

    Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 p.
  • 46B. Bonnard, D. Sugny.

    Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1289–1308.

    http://dx.doi.org/10.1137/080717043
  • 47A. Borzì, E. Decker.

    Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, in: J. Comput. Appl. Math., 2006, vol. 193, no 1, pp. 65–88.
  • 48A. Borzì, U. Hohenester.

    Multigrid optimization schemes for solving Bose-Einstein condensate control problems, in: SIAM J. Sci. Comput., 2008, vol. 30, no 1, pp. 441–462.

    http://dx.doi.org/10.1137/070686135
  • 49C. Brif, R. Chakrabarti, H. Rabitz.

    Control of quantum phenomena: Past, present, and future, Advances in Chemical Physics, S. A. Rice (ed), Wiley, New York, 2010.
  • 50F. Bullo, A. D. Lewis.

    Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-Verlag, New York, 2005, vol. 49, xxiv+726 p.
  • 51R. Cabrera, H. Rabitz.

    The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement, in: J. Phys. A, 2009, vol. 42, no 27, 275303, 9 p.

    http://dx.doi.org/10.1088/1751-8113/42/27/275303
  • 52Y. Chitour, M. Sigalotti.

    On the stabilization of persistently excited linear systems, in: SIAM J. Control Optim., 2010, vol. 48, no 6, pp. 4032–4055.

    http://dx.doi.org/10.1137/080737812
  • 53G. Citti, A. Sarti.

    A cortical based model of perceptual completion in the roto-translation space, in: J. Math. Imaging Vision, 2006, vol. 24, no 3, pp. 307–326.

    http://dx.doi.org/10.1007/s10851-005-3630-2
  • 54J.-M. Coron.

    Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, vol. 136, xiv+426 p.
  • 55W. P. Dayawansa, C. F. Martin.

    A converse Lyapunov theorem for a class of dynamical systems which undergo switching, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 4, pp. 751–760.

    http://dx.doi.org/10.1109/9.754812
  • 56L. El Ghaoui, S.-I. Niculescu.

    Robust decision problems in engineering: a linear matrix inequality approach, in: Advances in linear matrix inequality methods in control, Philadelphia, PA, Adv. Des. Control, SIAM, 2000, vol. 2, pp. 3–37.
  • 57S. Ervedoza, J.-P. Puel.

    Approximate controllability for a system of Schrödinger equations modeling a single trapped ion, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, pp. 2111–2136.
  • 58M. Fliess, J. Lévine, P. Martin, P. Rouchon.

    Flatness and defect of non-linear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327–1361.

    http://dx.doi.org/10.1080/00207179508921959
  • 59B. Franchi, R. Serapioni, F. Serra Cassano.

    Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, in: Comm. Anal. Geom., 2003, vol. 11, no 5, pp. 909–944.
  • 60M. Gugat.

    Optimal switching boundary control of a string to rest in finite time, in: ZAMM Z. Angew. Math. Mech., 2008, vol. 88, no 4, pp. 283–305.
  • 61J. Hespanha, S. Morse.

    Stability of switched systems with average dwell-time, in: Proceedings of the 38th IEEE Conference on Decision and Control, CDC 1999, Phoenix, AZ, USA, 1999, pp. 2655–2660.
  • 62D. Hubel, T. Wiesel.

    Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford University Press, Oxford, 2004.
  • 63R. Illner, H. Lange, H. Teismann.

    Limitations on the control of Schrödinger equations, in: ESAIM Control Optim. Calc. Var., 2006, vol. 12, no 4, pp. 615–635.

    http://dx.doi.org/10.1051/cocv:2006014
  • 64A. Isidori.

    Nonlinear control systems, Communications and Control Engineering Series, Second, Springer-Verlag, Berlin, 1989, xii+479 p, An introduction.
  • 65K. Ito, K. Kunisch.

    Optimal bilinear control of an abstract Schrödinger equation, in: SIAM J. Control Optim., 2007, vol. 46, no 1, pp. 274–287.
  • 66K. Ito, K. Kunisch.

    Asymptotic properties of feedback solutions for a class of quantum control problems, in: SIAM J. Control Optim., 2009, vol. 48, no 4, pp. 2323–2343.

    http://dx.doi.org/10.1137/080720784
  • 67R. Kalman.

    When is a linear control system optimal?, in: ASME Transactions, Journal of Basic Engineering, 1964, vol. 86, pp. 51–60.
  • 68N. Khaneja, S. J. Glaser, R. W. Brockett.

    Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, in: Phys. Rev. A (3), 2002, vol. 65, no 3, part A, 032301, 11 p.
  • 69N. Khaneja, B. Luy, S. J. Glaser.

    Boundary of quantum evolution under decoherence, in: Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no 23, pp. 13162–13166.

    http://dx.doi.org/10.1073/pnas.2134111100
  • 70V. S. Kozyakin.

    Algebraic unsolvability of a problem on the absolute stability of desynchronized systems, in: Avtomat. i Telemekh., 1990, pp. 41–47.
  • 71G. Lafferriere, H. J. Sussmann.

    A differential geometry approach to motion planning, in: Nonholonomic Motion Planning (Z. Li and J. F. Canny, editors), Kluwer Academic Publishers, 1993, pp. 235-270.
  • 72J.-S. Li, N. Khaneja.

    Ensemble control of Bloch equations, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 3, pp. 528–536.

    http://dx.doi.org/10.1109/TAC.2009.2012983
  • 73D. Liberzon, J. P. Hespanha, A. S. Morse.

    Stability of switched systems: a Lie-algebraic condition, in: Systems Control Lett., 1999, vol. 37, no 3, pp. 117–122.

    http://dx.doi.org/10.1016/S0167-6911(99)00012-2
  • 74D. Liberzon.

    Switching in systems and control, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2003, xiv+233 p.
  • 75H. Lin, P. J. Antsaklis.

    Stability and stabilizability of switched linear systems: a survey of recent results, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 2, pp. 308–322.

    http://dx.doi.org/10.1109/TAC.2008.2012009
  • 76Y. Lin, E. D. Sontag, Y. Wang.

    A smooth converse Lyapunov theorem for robust stability, in: SIAM J. Control Optim., 1996, vol. 34, no 1, pp. 124–160.

    http://dx.doi.org/10.1137/S0363012993259981
  • 77W. Liu.

    Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in: SIAM J. Control Optim., 1997, vol. 35, no 6, pp. 1989–2020.

    http://dx.doi.org/10.1137/S0363012994268667
  • 78Y. Maday, J. Salomon, G. Turinici.

    Monotonic parareal control for quantum systems, in: SIAM J. Numer. Anal., 2007, vol. 45, no 6, pp. 2468–2482.

    http://dx.doi.org/10.1137/050647086
  • 79A. N. Michel, Y. Sun, A. P. Molchanov.

    Stability analysis of discountinuous dynamical systems determined by semigroups, in: IEEE Trans. Automat. Control, 2005, vol. 50, no 9, pp. 1277–1290.

    http://dx.doi.org/10.1109/TAC.2005.854582
  • 80M. Mirrahimi.

    Lyapunov control of a particle in a finite quantum potential well, in: Proceedings of the 45th IEEE Conference on Decision and Control, 2006.
  • 81M. Mirrahimi, P. Rouchon.

    Controllability of quantum harmonic oscillators, in: IEEE Trans. Automat. Control, 2004, vol. 49, no 5, pp. 745–747.
  • 82A. P. Molchanov, Y. S. Pyatnitskiy.

    Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, in: Systems Control Lett., 1989, vol. 13, no 1, pp. 59–64.

    http://dx.doi.org/10.1016/0167-6911(89)90021-2
  • 83R. Montgomery.

    A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
  • 84R. M. Murray, S. S. Sastry.

    Nonholonomic motion planning: steering using sinusoids, in: IEEE Trans. Automat. Control, 1993, vol. 38, no 5, pp. 700–716.

    http://dx.doi.org/10.1109/9.277235
  • 85V. Nersesyan.

    Growth of Sobolev norms and controllability of the Schrödinger equation, in: Comm. Math. Phys., 2009, vol. 290, no 1, pp. 371–387.
  • 86A. Y. Ng, S. Russell.

    Algorithms for Inverse Reinforcement Learning, in: Proc. 17th International Conf. on Machine Learning, 2000, pp. 663–670.
  • 87J. Petitot.

    Neurogéomètrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Les Éditions de l'École Polythechnique, 2008.
  • 88J. Petitot, Y. Tondut.

    Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in: Math. Inform. Sci. Humaines, 1999, no 145, pp. 5–101.
  • 89H. Rabitz, H. de Vivie-Riedle, R. Motzkus, K. Kompa.

    Wither the future of controlling quantum phenomena?, in: SCIENCE, 2000, vol. 288, pp. 824–828.
  • 90D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio.

    Decoherence by engineered quantum baths, in: J. Phys. A, 2007, vol. 40, no 28, pp. 8033–8040.

    http://dx.doi.org/10.1088/1751-8113/40/28/S12
  • 91P. Rouchon.

    Control of a quantum particle in a moving potential well, in: Lagrangian and Hamiltonian methods for nonlinear control 2003, Laxenburg, IFAC, 2003, pp. 287–290.
  • 92A. Sasane.

    Stability of switching infinite-dimensional systems, in: Automatica J. IFAC, 2005, vol. 41, no 1, pp. 75–78.

    http://dx.doi.org/10.1016/j.automatica.2004.07.013
  • 93A. Saurabh, M. H. Falk, M. B. Alexandre.

    Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions, in: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, December 9-11, 2008, Cancún, Mexico, 2008, pp. 2081–2086.
  • 94M. Shapiro, P. Brumer.

    Principles of the Quantum Control of Molecular Processes, Principles of the Quantum Control of Molecular Processes, pp. 250. Wiley-VCH, February 2003.
  • 95R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King.

    Stability criteria for switched and hybrid systems, in: SIAM Rev., 2007, vol. 49, no 4, pp. 545–592.

    http://dx.doi.org/10.1137/05063516X
  • 96H. J. Sussmann.

    A continuation method for nonholonomic path finding, in: Proceedings of the 32th IEEE Conference on Decision and Control, CDC 1993, Piscataway, NJ, USA, 1993, pp. 2718–2723.
  • 97E. Todorov.

    12, in: Optimal control theory, Bayesian Brain: Probabilistic Approaches to Neural Coding, Doya K (ed), 2006, pp. 269–298.
  • 98G. Turinici.

    On the controllability of bilinear quantum systems, in: Mathematical models and methods for ab initio Quantum Chemistry, M. Defranceschi, C. Le Bris (editors), Lecture Notes in Chemistry, Springer, 2000, vol. 74.
  • 99L. Yatsenko, S. Guérin, H. Jauslin.

    Topology of adiabatic passage, in: Phys. Rev. A, 2002, vol. 65, 043407, 7 p.
  • 100E. Zuazua.

    Switching controls, in: Journal of the European Mathematical Society, 2011, vol. 13, no 1, pp. 85–117.