EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1C. Borcea, X. Goaoc, S. Lazard, S. Petitjean.

    Common Tangents to Spheres in 3, in: Discrete & Computational Geometry, 2006, vol. 35, no 2, pp. 287-300. [ DOI : 10.1007/s00454-005-1230-y ]

    http://hal.inria.fr/inria-00100261/en
  • 2H. Brönnimann, O. Devillers, V. Dujmovic, H. Everett, M. Glisse, X. Goaoc, S. Lazard, H.-S. Na, S. Whitesides.

    Lines and free line segments Tangent to Arbitrary Three-dimensional Convex Polyhedra, in: SIAM Journal on Computing, 2007, vol. 37, no 2, pp. 522-551. [ DOI : 10.1137/S0097539705447116 ]

    http://hal.inria.fr/inria-00103916/en
  • 3H. Brönnimann, H. Everett, S. Lazard, F. Sottile, S. Whitesides.

    Transversals to line segments in three-dimensional space, in: Discrete & Computational Geometry, 2005, vol. 34, no 3, pp. 381 - 390. [ DOI : 10.1007/s00454-005-1183-1 ]

    http://hal.inria.fr/inria-00000384/en
  • 4J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier, E. P. Tsigaridas.

    On the topology of real algebraic plane curves, in: Mathematics in Computer Science, 2010.

    http://hal.inria.fr/inria-00517175/en
  • 5O. Cheong, X. Goaoc, A. Holmsen, S. Petitjean.

    Hadwiger and Helly-type theorems for disjoint unit spheres, in: Discrete & Computational Geometry, 2008, vol. 39, no 1-3, pp. 194-212.

    http://hal.inria.fr/inria-00103856/en
  • 6O. Devillers, V. Dujmovic, H. Everett, X. Goaoc, S. Lazard, H.-S. Na, S. Petitjean.

    The expected number of 3D visibility events is linear, in: SIAM Journal on Computing, 2003, vol. 32, no 6, pp. 1586-1620. [ DOI : 10.1137/S0097539702419662 ]

    http://hal.inria.fr/inria-00099810/en
  • 7L. Dupont, D. Lazard, S. Lazard, S. Petitjean.

    Near-Optimal Parameterization of the Intersection of Quadrics: I. The Generic Algorithm; II. A Classification of Pencils; III. Parameterizing Singular Intersections, in: Journal of Symbolic Computation, 2008, vol. 43, pp. 168–191, 192–215, 216–232.

    http://hal.inria.fr/inria-00186090/en/, http://hal.inria.fr/inria-00186091/en/
  • 8H. Everett, D. Lazard, S. Lazard, M. Safey El Din.

    The Voronoi diagram of three lines, in: Journal of Discrete and Computational Geometry, 2009, vol. 42, no 1, pp. 94-130. [ DOI : 10.1007/s00454-009-9173-3 ]

    http://www.springerlink.com/content/f5601q6324664k2p/?p=6d7bb74bf9df40b0b7756b3a5153809f&pi=5, http://hal.inria.fr/inria-00431518/en
  • 9M. Glisse, S. Lazard.

    An Upper Bound on the Average Size of Silhouettes, in: Discrete & Computational Geometry, 2008, vol. 40, no 2, pp. 241-257. [ DOI : 10.1007/s00454-008-9089-3 ]

    http://hal.inria.fr/inria-00336571/en
  • 10S. Lazard, L. Peñaranda, S. Petitjean.

    Intersecting Quadrics: An Efficient and Exact Implementation, in: Computational Geometry, 2006, vol. 35, no 1-2, pp. 74–99.

    http://hal.inria.fr/inria-00000380/en
  • 11S. Petitjean.

    Invariant-based characterization of the relative position of two projective conics, in: Non-Linear Computational Geometry, I. Z. Emiris, F. Sottile, T. Theobald (editors), Springer, 2008.

    http://hal.inria.fr/inria-00335968/en
Publications of the year

Articles in International Peer-Reviewed Journals

  • 12O. Cheong, X. Goaoc, C. Nicaud.

    Set Systems and Families of Permutations with Small Traces, in: European Journal of Combinatorics, 2013, vol. 34, pp. 229-239.

    http://hal.inria.fr/hal-00752064
  • 13O. Devillers, M. Glisse, X. Goaoc, G. Moroz, M. Reitzner.

    The monotonicity of f-vectors of random polytopes, in: Electronic Communications in Probability, 2013, vol. 18, no 23. [ DOI : 10.1214/ECP.v18-2469 ]

    http://hal.inria.fr/hal-00805690
  • 14V. Dujmovic, W. Evans, S. Lazard, W. Lenhart, G. Liotta, D. Rappaport, S. Wismath.

    On Point-sets that Support Planar Graphs, in: Computational Geometry : Theory and Applications, 2013, vol. 43, no 1, pp. 29–50. [ DOI : 10.1016/j.comgeo.2012.03.003 ]

    http://hal.inria.fr/hal-00684510
  • 15X. Goaoc, H.-S. Kim, S. Lazard.

    Bounded-Curvature Shortest Paths through a Sequence of Points using Convex Optimization, in: SIAM Journal on Computing, 2013, vol. 42, no 2, pp. 662-684. [ DOI : 10.1137/100816079 ]

    http://hal.inria.fr/hal-00927100
  • 16É. C. de Verdière, G. Ginot, X. Goaoc.

    Helly numbers of acyclic families, in: Advances in Mathematics, 2014, vol. 253, pp. 163-193, Minor changes. [ DOI : 10.1016/j.aim.2013.11.004 ]

    http://hal.inria.fr/hal-00646166

International Conferences with Proceedings

  • 17P. Angelini, D. Eppstein, F. Frati, M. Kaufmann, S. Lazard, T. Mchedlidze, M. Teillaud, A. Wolff.

    Universal Point Sets for Planar Graph Drawings with Circular Arcs, in: Canadian Conference on Computational Geometry, Waterloo, Canada, July 2013, pp. 117-122.

    http://hal.inria.fr/hal-00846953
  • 18Y. Bouzidi, S. Lazard, M. Pouget, F. Rouillier.

    Rational Univariate Representations of Bivariate Systems and Applications, in: ISSAC - 38th International Symposium on Symbolic and Algebraic Computation, Boston, United States, 2013, pp. 109-116.

    http://hal.inria.fr/hal-00809430
  • 19Y. Bouzidi, S. Lazard, M. Pouget, F. Rouillier.

    Separating Linear Forms for Bivariate Systems, in: ISSAC - 38th International Symposium on Symbolic and Algebraic Computation, Boston, United States, 2013, pp. 117-124.

    http://hal.inria.fr/hal-00809425
  • 20O. Devillers, M. Glisse, X. Goaoc.

    Complexity Analysis of Random Geometric Structures Made Simpler, in: 30th Annual Symposium on Computational Geometry, Rio, Brazil, 2013, pp. 167-175. [ DOI : 10.1145/2462356.2462362 ]

    http://hal.inria.fr/hal-00833774

Conferences without Proceedings

  • 21X. Goaoc, J. Matoušek, P. Paták, Z. Safernová, M. Tancer.

    Simplifying inclusion-exclusion formulas, in: European Conference on Combinatorics, Graph Theory and Applications, Pisa, Italy, 2013, 14 p.

    http://hal.inria.fr/hal-00764182

Internal Reports

Other Publications

  • 27J. Recknagel.

    Topology of planar singular curves resultant of two trivariate polynomials, Institute for Computer Science, Martin-Luther-University, Halle-Wittenberg, August 2013.

    http://hal.inria.fr/hal-00927768
References in notes
  • 28GMP: the GNU MP Bignum Library, The Free Software Foundation.

    http://gmplib.org/
  • 29LiDIA: a C++ Library for Computational Number Theory, Darmstadt University of Technology.

    http://www.informatik.tu-darmstadt.de/TI/LiDIA
  • 30QI: a C++ package for parameterizing intersections of quadrics, 2005, LORIA, Inria Lorraine, VEGAS project.

    http://www.loria.fr/equipes/vegas/qi
  • 31M. Baker.

    Alhazen's problem, in: American J. Mathmatics, 1881, vol. 4, no 1, pp. 327-331.
  • 32E. Berberich, M. Hemmer, S. Lazard, L. Peñaranda, M. Teillaud.

    Algebraic kernel, in: CGAL User and Reference Manual, 3.6 edition, CGAL Editorial board (editor), CGAL Editorial board, 2010.

    http://hal.inria.fr/inria-00537545/en
  • 33G. Glaeser.

    Reflections on spheres and cylinders of revolution, in: J. Geometry and Graphics, 1999, vol. 3, no 2, pp. 121-139.
  • 34S. Lazard, L. Peñaranda, E. P. Tsigaridas.

    Univariate Algebraic Kernel and Application to Arrangements, in: International Symposium on Experimental Algorithms – SEA Experimental Algorithms, 8th International Symposium, SEA 2009, Allemagne Dortmund, Springer, 2009, vol. 5526/2009, pp. 209-220.

    http://hal.inria.fr/inria-00431559/en/