EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1F. Blanqui.

    Definitions by rewriting in the Calculus of Constructions, in: Mathematical Structures in Computer Science, 2005, vol. 15, no 1, pp. 37-92. [ DOI : 10.1017/S0960129504004426 ]

    http://hal.inria.fr/inria-00105648/en/
  • 2F. Blanqui, A. Koprowski.

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, in: Mathematical Structures in Computer Science, 2011, vol. 21, no 4, pp. 827-859.

    http://hal.inria.fr/inria-00543157/en/
  • 3M. Boespflug.

    Conception d'un noyau de vérification de preuves pour le lambda-Pi-calcul modulo, École Polytechnique, 2011.
  • 4G. Burel.

    Experimenting with Deduction Modulo, in: CADE 2011, V. Sofronie-Stokkermans, N. Bjørner (editors), Lecture Notes in Artificial Intelligence, Springer, 2011, vol. 6803, pp. 162–176.
  • 5G. Dowek.

    Polarized Resolution Modulo, in: IFIP Theoretical Computer Science, 2010.
  • 6G. Dowek, T. Hardin, C. Kirchner.

    Theorem proving modulo, in: Journal of Automated Reasoning, 2003, vol. 31, pp. 33-73.
  • 7C. Dubois, T. Hardin, V. Donzeau-Gouge.

    Building certified components within FOCAL, in: Revised Selected Papers from the Fifth Symposium on Trends in Functional Programming, TFP 2004, München, Germany, 25-26 November 2004, H.-W. Loidl (editor), Trends in Functional Programming, Intellect, 2006, vol. 5, pp. 33-48.
  • 8O. Hermant.

    Resolution is Cut-Free, in: Journal of Automated Reasoning, March 2010, vol. 44, no 3, pp. 245-276.
  • 9M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.

    Verifying B Proof Rules using Deep Embedding and Automated Theorem Proving, in: Software and Systems Modeling (SoSyM), June 2013.
  • 10M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.

    Tableaux Modulo Theories Using Superdeduction, in: Global Journal of Advanced Software Engineering (GJASE), December 2014, vol. 1, pp. 1 - 13. [ DOI : 10.1007/978-3-642-31365-3_26 ]

    https://hal.archives-ouvertes.fr/hal-01099338
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 12A. Assaf, A. Díaz-Caro, S. Perdrix, C. Tasson, B. Valiron.

    Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus, in: Logical Methods in Computer Science, December 2014, vol. 10:4, no 8, 40 p. [ DOI : 10.2168/LMCS-10(4:8)2014 ]

    https://hal.inria.fr/hal-01097602
  • 13M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.

    Tableaux Modulo Theories Using Superdeduction, in: Global Journal of Advanced Software Engineering (GJASE), December 2014, vol. 1, pp. 1 - 13. [ DOI : 10.1007/978-3-642-31365-3_26 ]

    https://hal.archives-ouvertes.fr/hal-01099338

Invited Conferences

International Conferences with Proceedings

  • 15G. Burel.

    Cut Admissibility by Saturation, in: Joint International Conference, RTA-TLCA, Vienna, Austria, G. Dowek (editor), Lecture Notes in Computer Science, Springer, July 2014, vol. 8560, pp. 124-138. [ DOI : 10.1007/978-3-319-08918-8_9 ]

    https://hal.inria.fr/hal-01097428
  • 16S. Cruanes.

    Logtk : A Logic ToolKit for Automated Reasoning and its Implementation, in: 4th Workshop on Practical Aspects of Automated Reasoning, Vienna, Austria, July 2014.

    https://hal.inria.fr/hal-01101057

Conferences without Proceedings

  • 17P. Halmagrand.

    Using Deduction Modulo in Set Theory, in: SETS14, 1st International Workshop about Sets and Tools, Toulouse, France, June 2014, 12 p.

    https://hal.inria.fr/hal-01100512

Other Publications

References in notes
  • 28A. Asperti, W. Ricciotti, C. Sacerdoti Coen, E. Tassi.

    A compact kernel for the calculus of inductive constructions, in: Sadhana, 2009, vol. 34, no 1, pp. 71-144.

    http://dx.doi.org/10.1007/s12046-009-0003-3
  • 29L. Benthem Jutting, J. McKinna, R. Pollack.

    Checking algorithms for Pure Type Systems, in: Types for Proofs and Programs, H. Barendregt, T. Nipkow (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1994, vol. 806, pp. 19-61.
  • 30Y. Bertot, P. Castéran.

    Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions, Springer-Verlag, 2004.
  • 31F. Blanqui.

    Terminaison des systèmes de réécriture d'ordre supérieur basée sur la notion de clôture de calculabilité, Université Paris-Diderot - Paris VII, July 2012, HDR.

    http://tel.archives-ouvertes.fr/tel-00724233
  • 32D. Cousineau, G. Dowek.

    Embedding Pure Type Systems in the lambda-Pi-calculus modulo, in: Typed lambda calculi and applications, S. Ronchi della Rocca (editor), Lecture Notes in Computer Science, Springer-Verlag, 2007, vol. 4583, pp. 102-117.
  • 33D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, O. Hermant.

    Proof Certification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the Tortoise with Shorter Steps, in: IWIL - 10th International Workshop on the Implementation of Logics - 2013, Stellenbosch, South Africa, S. Schulz, G. Sutcliffe, B. Konev (editors), EasyChair, December 2013.

    https://hal.inria.fr/hal-00909688
  • 34D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, O. Hermant.

    Zenon Modulo: When Achilles Outruns the Tortoise using Deduction Modulo, in: LPAR - Logic for Programming Artificial Intelligence and Reasoning - 2013, Stellenbosch, South Africa, K. McMillan, A. Middeldorp, A. Voronkov (editors), Springer, December 2013, vol. 8312, pp. 274-290. [ DOI : 10.1007/978-3-642-45221-5_20 ]

    https://hal.inria.fr/hal-00909784
  • 35D. Delahaye, M. Jacquel.

    Recovering Intuition from Automated Formal Proofs using Tableaux with Superdeduction, in: electronic Journal of Mathematics and Technology, February 2013, vol. 7, no 2, pp. 1 - 20.

    https://hal.archives-ouvertes.fr/hal-01099371
  • 36R. Gandy.

    Church's Thesis and Principles for Mechanisms, in: The Kleene Symposium, North-Holland, 1980.
  • 37J.-Y. Girard, Y. Lafont, P. Taylor.

    Proofs and Types, Cambridge University Press, 1988.
  • 38R. Harper, F. Honsell, G. Plotkin.

    A Framework for Defining Logics, in: Journal of the association for computing machinery, 1993, pp. 194–204.
  • 39J. Harrison.

    HOL Light: An Overview, in: Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, vol. 5674, pp. 60-66.

    http://dx.doi.org/10.1007/978-3-642-03359-9_4
  • 40L. M. Hines.

    STR+˙VE: The STR+˙VE-Based Subset Prover, in: Conference on Automated Deduction (CADE), Kaiserslautern (Germany), LNCS, Springer, July 1990, pp. 193–206.
  • 41J. Hurd.

    The OpenTheory Standard Theory Library, in: NASA Formal Methods, M. Bobaru, K. Havelund, G. Holzmann, R. Joshi (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, vol. 6617, pp. 177-191.

    http://dx.doi.org/10.1007/978-3-642-20398-5_14
  • 42M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.

    Verifying B Proof Rules using Deep Embedding and Automated Theorem Proving, in: Software Engineering and Formal Methods, November 2011, vol. 7041, pp. 253-268. [ DOI : 10.1007/978-3-642-24690-6_18 ]

    https://hal.archives-ouvertes.fr/hal-00722373
  • 43J.-P. Jouannaud, A. Rubio.

    Polymorphic Higher-Order Recursive Path Orderings, in: Journal of the ACM, 2007, vol. 54, no 1, pp. 1-48.
  • 44J.-P. Jouannaud, A. Rubio.

    The Higher-Order Recursive Path Ordering, in: Proceedings of the 14th IEEE Symposium on Logic in Computer Science, 1999.
  • 45A. Kersani, N. Peltier.

    Combining Superposition and Induction: A Practical Realization, in: FroCoS 2013 - 9th International Symposium on s of Combining Systems (co-located with TABLEAUX 2013), Nancy, France, P. Fontaine, C. Ringeissen, R. A. Schmidt (editors), Lecture Notes in Computer Science (LNCS), Springer, September 2013, vol. 8152, pp. 7-22, Session: Inductive Theorem Proving. [ DOI : 10.1007/978-3-642-40885-4_2 ]

    https://hal.archives-ouvertes.fr/hal-00934610
  • 46K. Korovin.

    iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description), in: IJCAR, A. Armando, P. Baumgartner (editors), Lecture Notes in Artificial Intelligence, Springer, 2008, vol. 5195, pp. 292-298.
  • 47F. Rabe, M. Kohlhase.

    A Scalable Module System, in: Inf. Comput., September 2013, vol. 230, pp. 1–54.

    http://dx.doi.org/10.1016/j.ic.2013.06.001
  • 48B. R. Salinas.

    Puntos fijos en conjuntos ordenados, Publicaciones del Seminario Matematico Garcia de Galdeano, Consejo Superior de Investigationes Cientificas, Facultad de Ciencas de Zaragoza, 1969, English summary on http://www.ams.org/mathscinet-getitem?mr=250943 .
  • 49R. Statman.

    A New Type Assignment for Strongly Normalizable Terms, in: Computer Science Logic 2013 (CSL 2013), Dagstuhl, Germany, S. R. D. Rocca (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, vol. 23, pp. 634–652.