Bibliography
Major publications by the team in recent years
-
1M. Blaschko, C. Lampert.
Learning to Localize Objects with Structured Output Regression, in: Proceedings of the 10th European Conference on Computer Vision: Part I, ECCV '08, 2008, pp. 2–15. -
2B. Glocker, A. Sotiras, N. Komodakis, N. Paragios.
Deformable Registration: Setting the State of the Art with Discrete Methods, in: Annual Reviews on Biomedical Engineering, 2011, pp. 219-244. -
3I. Kokkinos, M. M. Bronstein, R. Litman, A. M. Bronstein.
Intrinsic shape context descriptors for deformable shapes, in: CVPR - IEEE Conference on Computer Vision and Pattern Recognition, Providence, United States, 2012, pp. 159-166.
https://hal.inria.fr/hal-00857572 -
4I. Kokkinos.
Rapid Deformable Object Detection using Dual-Tree Branch-and-Bound, in: Neural Information Processing Systems (NIPS), Granada, Spain, December 2011. -
5I. Kokkinos.
Bounding Part Scores for Rapid Detection with Deformable Part Models, in: ECCV Workshops - Parts and Attributes Workshop, European Conference on Computer Vision, Florence, Italy, 2012, pp. 41-50.
https://hal.inria.fr/hal-00857563 -
6I. Kokkinos.
Rapid Deformable Object Detection using Bounding-based Techniques, April 2012, no RR-7940.
https://hal.inria.fr/hal-00696120 -
7I. Kokkinos.
Shufflets: Shared Mid-level Parts for Fast Multi-Category Detection, in: ICCV - International Conference on Computer Vision, Sydney, Australia, 2013.
https://hal.inria.fr/hal-00857578 -
8I. Kokkinos, A. Yuille.
Inference and Learning with Hierarchical Shape Models, in: International Journal of Computer Vision, 2011, vol. 93, no 2, pp. 201-225. -
9N. Komodakis, N. Paragios, G. Tziritas.
MRF Energy Minimization and Beyond via Dual Decomposition, in: IEEE Trans. Pattern Anal. Mach. Intell., 2011, vol. 33, no 3, pp. 531-552. -
10M. P. Kumar, V. Kolmogorov, P. Torr.
An analysis of convex relaxations for MAP estimation of discrete MRFs, in: JMLR - Journal of Machine Learning Research, 2009.
http://hal.inria.fr/hal-00773608 -
11M. P. Kumar, P. Torr, A. Zisserman.
OBJCUT: Efficient segmentation using top-down and bottom-up cues, in: PAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010.
http://hal.inria.fr/hal-00773609 -
12C. Lampert, M. Blaschko, T. Hofmann.
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization, in: IEEE Trans. Pattern Anal. Mach. Intell., December 2009, vol. 31, no 12, pp. 2129–2142. -
13M. Raptis, I. Kokkinos, S. Soatto.
Discovering Discriminative Action Parts from Mid-Level Video Representations, in: CVPR - IEEE Conference on Computer Vision and Pattern Recognition, Providence, United States, June 2012.
https://hal.inria.fr/hal-00918807 -
14O. Teboul, I. Kokkinos, L. Simon, K. Panagiotis, N. Paragios.
Parsing Facades with Shape Grammars and Reinforcement Learning, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, vol. 35, no 7, pp. 1744-1756. [ DOI : 10.1109/TPAMI.2012.252 ]
https://hal.archives-ouvertes.fr/hal-00855609 -
15S. Tsogkas, I. Kokkinos.
Learning-Based Symmetry Detection in Natural Images, in: ECCV - 12th European Conference on Computer Vision, Florence, Italy, October 2012, pp. 41-54.
https://hal.inria.fr/hal-00856535
Doctoral Dissertations and Habilitation Theses
-
16M. Blaschko.
Advances in Empirical Risk Minimization for Image Analysis and Pattern Recognition, ENS Cachan, November 2014, Habilitation à diriger des recherches.
https://tel.archives-ouvertes.fr/tel-01086088
Articles in International Peer-Reviewed Journals
-
17D. Chittajallu, N. Paragios, I. Kakadiaris.
An Explicit Shape-constrained MRF-based Contour Evolution Method for 2D Medical Image Segmentation, in: IEEE Journal of Biomedical and Health Informatics, January 2014, pp. 2168-2194. [ DOI : 10.1109/JBHI.2013.2257820 ]
https://hal.archives-ouvertes.fr/hal-00858880 -
18S. Parisot, W. Wells, S. Chemouny, H. Duffau, N. Paragios.
Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs, in: Medical Image Analysis, May 2014, vol. 18, no 4, pp. 647 - 659. [ DOI : 10.1016/j.media.2014.02.006 ]
https://hal.inria.fr/hal-01109692
International Conferences with Proceedings
-
19A. Behl, C. Jawahar, M. P. Kumar.
Optimizing Average Precision using Weakly Supervised Data, in: CVPR - IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, United States, 2014.
https://hal.inria.fr/hal-00984699 -
20H. Boussaid, I. Kokkinos.
Fast and Exact: ADMM-Based Discriminative Shape Segmentation with Loopy Part Models, in: IEEE Conference in Computer Vision and Pattern Recognition, Greater Columbus Convention Center in Columbus, Ohio., United States, June 2014, pp. 4058 - 4065. [ DOI : 10.1109/CVPR.2014.517 ]
https://hal.archives-ouvertes.fr/hal-01109287 -
21H. Boussaid, I. Kokkinos, N. Paragios.
Discriminative learning of deformable contour models, in: Int.l Symposium on Biomedical Imaging (ISBI), Bejing, China, April 2014, pp. 624 - 628. [ DOI : 10.1109/ISBI.2014.6867948 ]
https://hal.inria.fr/hal-01108276 -
22M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi.
Describing Textures in the Wild, in: IEEE Conference in Computer Vision and Pattern Recognition, Greater Columbus Convention Center in Columbus, Ohio., United States, June 2014, pp. 3606 - 3613. [ DOI : 10.1109/CVPR.2014.461 ]
https://hal.archives-ouvertes.fr/hal-01109284 -
23P. K. Dokania, A. Behl, C. V. Jawahar, M. Pawan Kumar.
Learning to Rank Using High-Order Information, in: ECCV 2014 - European Conference on Computer Vision (2014), Zurch, Switzerland, September 2014, pp. 609 - 623. [ DOI : 10.1007/978-3-319-10593-2_40 ]
https://hal.inria.fr/hal-01076220 -
24M. Ghafarianzadeh, M. Blaschko, G. Sibley.
Unsupervised Spatio-Temporal Segmentation with Sparse Spectral Clustering, in: British Machine Vision Conference (BMVC), Nottingham, United Kingdom, September 2014.
https://hal.inria.fr/hal-01034903 -
25M. P. Kumar.
Rounding-based Moves for Metric Labeling, in: NIPS - Advances in Neural Information Processing Systems, Montreal, Canada, 2014.
https://hal.inria.fr/hal-01069910 -
27P. Mohapatra, C. V. Jawahar, M. P. Kumar.
Efficient Optimization for Average Precision SVM, in: NIPS - Advances in Neural Information Processing Systems, Montreal, Canada, 2014.
https://hal.inria.fr/hal-01069917 -
28J. I. Orlando, M. Blaschko.
Learning fully-connected CRFs for blood vessel segmentation in retinal images, in: Medical Image Computing and Computer Assisted Intervention (MICCAI), Boston, United States, Springer, September 2014.
https://hal.inria.fr/hal-01024226 -
29N. Paragios, N. Komodakis.
Discrete Visual Perception, in: International Conference on Pattern Recognition, Stockholm, Sweden, IEEE, August 2014, pp. 1-7.
https://hal.archives-ouvertes.fr/hal-01023406 -
30E. Trulls, S. Tsogkas, I. Kokkinos, A. Sanfeliu, F. Moreno-Noguer.
Segmentation-Aware Deformable Part Models, in: IEEE Conference in Computer Vision and Pattern Recognition, Greater Columbus Convention Center in Columbus, Ohio., United States, June 2014, pp. 168 - 175. [ DOI : 10.1109/CVPR.2014.29 ]
https://hal.archives-ouvertes.fr/hal-01109286 -
31A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, R. B. Girshick, J. Kannala, E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss, B. Taskar, K. Simonyan, N. Saphra, S. Mohamed.
Understanding Objects in Detail with Fine-grained Attributes, in: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, United States, June 2014.
https://hal.inria.fr/hal-00981125
National Conferences with Proceedings
-
32M. Blaschko, A. Mittal, E. Rahtu.
An O(n log n) Cutting Plane Algorithm for Structured Output Ranking, in: German Conference on Pattern Recognition, Münster, Germany, Springer, September 2014.
https://hal.inria.fr/hal-01020943
Conferences without Proceedings
-
33S. Alchatzidis, A. Sotiras, N. Paragios.
Discrete Multi Atlas Segmentation using Agreement Constraints, in: British Machine Vision Conference, Nottingham, United Kingdom, British Machine Vision Association, September 2014.
https://hal.inria.fr/hal-01061457 -
34E. Belilovsky, A. Argyriou, M. Blaschko.
Approximating Combined Discrete Total Variation and Correlated Sparsity With Convex Relaxations, in: NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning, Montreal, Canada, December 2014.
https://hal.inria.fr/hal-01104411 -
35W. Bounliphone, A. Gretton, M. Blaschko.
Kernel non-parametric tests of relative dependency, in: NIPS Workshop on Modern Nonparametrics 3: Automating the Learning Pipeline, Montreal, Canada, December 2014.
https://hal.inria.fr/hal-01104407 -
36P.-A. Savalle, S. Tsogkas, G. Papandreou, I. Kokkinos.
Deformable Part Models with CNN Features, in: European Conference on Computer Vision, Parts and Attributes Workshop, Zurich, Switzerland, September 2014.
https://hal.archives-ouvertes.fr/hal-01109290 -
37J. Yu, M. Blaschko.
Lovasz Hinge for Learning Submodular Losses, in: NIPS Workshop on Representation and Learning Methods for Complex Outputs, Montreal, Canada, December 2014.
https://hal.inria.fr/hal-01104413
Books or Proceedings Editing
-
38N. Paragios, J. Duncan, N. Ayache (editors)
Handbook of Biomedical Imaging: Methodologies and Clinical Research, Springer, 2014, 590 p.
https://hal.inria.fr/inria-00616178
Internal Reports
-
39R. Gadde, R. Marlet, P. Nikos.
Learning grammars for architecture-specific facade parsing, September 2014, no RR-8600.
https://hal.inria.fr/hal-01069379 -
40N. Komodakis, B. Xiang, N. Paragios.
A Framework for Efficient Structured Max-Margin Learning of High-Order MRF Models, Ecole de Ponts-ParisTech ; Ecole Centrale de Paris ; Inria Saclay Ile de France, 2014, no RR-8645, pp. 1 - 34. [ DOI : 10.1109/TPAMI.2014.2368990 ]
https://hal.inria.fr/hal-01090971 -
41G. Papandreou, I. Kokkinos, P.-A. Savalle.
Untangling Local and Global Deformations in Deep Convolutional Networks for Image Classification and Sliding Window Detection, Toyota Technological Institute at Chicago ; Ecole Centrale Paris ; Inria Saclay Ile de France, November 2014.
https://hal.archives-ouvertes.fr/hal-01109289 -
42Y. Zeng, C. Wang, D. Samaras, X. Gu, N. Paragios.
Higher-order Graph Principles towards Non-rigid Surface Registration, Inria Saclay Ile de France, September 2014, no RR-8607, 31 p.
https://hal.inria.fr/hal-01086052
Scientific Popularization
-
43M. Blaschko.
Machine Learning for Neurological Disorders, in: Centraliens, March 2014, no 632, pp. 40-42.
https://hal.inria.fr/hal-00940262
Patents
-
44P. Nikos, E. Ferrante, R. Marini Silva.
Method and device for elastic registration between a two-dimensional digital image and a slice of a three-dimensional volume with overlapping content, July 2014, no US 2014/0192046 A1, 12 p.
https://hal.inria.fr/hal-01044647
Other Publications
-
45W. Bounliphone, A. Gretton, M. Blaschko.
A low variance consistent test of relative dependency, July 2014.
https://hal.inria.fr/hal-01005828