EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. M. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.

    http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
  • 2M. Bernacki, L. Fézoui, S. Lanteri, S. Piperno.

    Parallel unstructured mesh solvers for heterogeneous wave propagation problems, in: Appl. Math. Model., 2006, vol. 30, no 8, pp. 744–763.

    http://dx.doi.org/10.1016/j.apm.2005.06.015
  • 3A. Catella, V. Dolean, S. Lanteri.

    An implicit discontinuous Galerkin time-domain method for two-dimensional electromagnetic wave propagation, in: COMPEL, 2010, vol. 29, no 3, pp. 602–625.

    http://dx.doi.org/10.1108/03321641011028215
  • 4S. Delcourte, L. Fézoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.

    http://dx.doi.org/10.1051/proc/2009020
  • 5S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat.

    Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, Nov 2013, vol. 11, no 4, pp. 291–302. [ DOI : 10.1016/j.photonics.2013.06.005 ]

    http://hal.inria.fr/hal-00915347
  • 6V. Dolean, H. Fahs, L. Fézoui, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.

    http://dx.doi.org/10.1016/j.jcp.2009.09.038
  • 7V. Dolean, H. Fol, S. Lanteri, R. Perrussel.

    Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, in: J. Comp. Appl. Math., 2008, vol. 218, no 2, pp. 435-445.

    http://dx.doi.org/10.1016/j.cam.2007.05.026
  • 8V. Dolean, M. J. Gander, L. Gerardo-Giorda.

    Optimized Schwarz methods for Maxwell equations, in: SIAM J. Scient. Comp., 2009, vol. 31, no 3, pp. 2193–2213.

    http://dx.doi.org/10.1137/080728536
  • 9V. Dolean, S. Lanteri, R. Perrussel.

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: J. Comput. Phys., 2007, vol. 227, no 3, pp. 2044–2072.

    http://dx.doi.org/10.1016/j.jcp.2007.10.004
  • 10V. Dolean, S. Lanteri, R. Perrussel.

    Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, pp. 954–957.

    http://dx.doi.org/10.1109/TMAG.2008.915830
  • 11C. Durochat, S. Lanteri, R. Léger.

    A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: Int. J. Numer. Model., Electron. Netw. Devices Fields, Oct 2013, vol. 27, pp. 614-625. [ DOI : 10.1002/jnm.1943 ]

    http://hal.inria.fr/hal-00915353
  • 12C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., Nov 2013, vol. 224, pp. 681–704. [ DOI : 10.1016/j.amc.2013.08.069 ]

    http://hal.inria.fr/hal-00797973
  • 13M. El Bouajaji, V. Dolean, M. J. Gander, S. Lanteri.

    Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071. [ DOI : 10.1137/110842995 ]
  • 14M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., March 2013, vol. 219, no 13, pp. 7241–7251. [ DOI : 10.1016/j.amc.2011.03.140 ]

    http://hal.inria.fr/hal-00922826
  • 15V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962.

    http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
  • 16H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 17H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 18H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.

    http://dx.doi.org/10.1109/TAP.2011.2165471
  • 19L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.

    http://dx.doi.org/DOI:10.1051/m2an:2005049
  • 20S. Lanteri, R. Perrussel.

    An implicit hybridized discontinuous Galerkin method for the time-domain Maxwell's equations, Inria, Mar 2011, no RR-7578, 20 p.

    https://hal.inria.fr/inria-00578488
  • 21S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459. [ DOI : 10.1093/imanum/drs008 ]

    http://hal.inria.fr/hal-00874752
  • 22L. Li, S. Lanteri, R. Perrussel.

    Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2013, pp. 1112–1138. [ DOI : 10.1108/03321641311306196 ]

    http://hal.inria.fr/hal-00906142
  • 23L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., Jan 2014, vol. 256, pp. 563–581. [ DOI : 10.1016/j.jcp.2013.09.003 ]

    http://hal.inria.fr/hal-00795125
  • 24L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., Jul 2013, vol. 56, no 1, pp. 190–218. [ DOI : 10.1007/s10915-012-9669-5 ]

    http://hal.inria.fr/hal-00922844
  • 25L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246. [ DOI : 10.1051/m2an/2012002 ]

    http://hal.inria.fr/inria-00565217
  • 26J. Viquerat, K. Maciej, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

    http://hal.inria.fr/hal-00819758
Publications of the year

Articles in International Peer-Reviewed Journals

  • 27S. Delcourte, N. Glinsky.

    Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 42 p, forthcoming.

    https://hal.inria.fr/hal-01109424
  • 28C. Girard, S. Lanteri, R. Perrussel, N. Raveu.

    Toward the coupling of a discontinuous Galerkin method with a MoM for analysis of susceptibility of planar circuits, in: IEEE Transactions on Magnetics, February 2014, vol. 50, no 2, pp. 509-512. [ DOI : 10.1109/TMAG.2013.2282462 ]

    https://hal.archives-ouvertes.fr/hal-00958274
  • 29L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: Journal of Computational Physics, January 2014, vol. 256, pp. 563-581. [ DOI : 10.1016/j.jcp.2013.09.003 ]

    https://hal.inria.fr/hal-00795125
  • 30R. Léger, J. Viquerat, C. Durochat, C. Scheid, S. Lanteri.

    A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, in: Journal of Computational and Applied Mathematics, November 2014, vol. 270, 12 p. [ DOI : 10.1016/j.cam.2013.12.042 ]

    https://hal.inria.fr/hal-01109704
  • 31D. Mercerat, N. Glinsky.

    A nodal high-order discontinuous Galerkin method for elastic wave propagation in arbitrary heterogeneous media, in: Geophysical Journal International, 2015, 20 p, forthcoming.

    https://hal.inria.fr/hal-01109612
  • 32F. Peyrusse, N. Glinsky, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media – verification and validation in the Nice basin, in: Geophysical Journal International, October 2014, vol. 199, 20 p. [ DOI : 10.1093/gji/ggu256 ]

    https://hal.inria.fr/hal-01109565

International Conferences with Proceedings

  • 33M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Discontinuous Galerkin methods for solving Helmholtz elastic wave equations for seismic imaging, in: WCCM XI - ECCM V - ECFD VI - Barcelona 2014, Barcelone, Spain, July 2014.

    https://hal.inria.fr/hal-01096324
  • 34M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Hybridizable Discontinuous Galerkin method for solving Helmholtz elastic wave equations, in: EAGE Workshop on High Performance Computing for Upstream, Chania, Greece, September 2014.

    https://hal.inria.fr/hal-01096385
  • 35M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Performance analysis of DG and HDG methods for the simulation of seismic wave propagation in harmonic domain, in: Second Russian-French Workshop "Computational Geophysics", Berdsk, Russia, September 2014.

    https://hal.inria.fr/hal-01096392
  • 36C. Girard, N. Raveu, R. Perrussel, S. Lanteri.

    Coupling of a MoM and a discontinuous Galerkin method, in: CEFC, Annecy, France, May 2014, pp. OD2-4.

    https://hal.archives-ouvertes.fr/hal-00993485

Conferences without Proceedings

  • 37M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Numerical schemes for the simulation of seismic wave propagation in frequency domain, in: Réunion des Sciences de la Terre 2014, Pau, France, October 2014.

    https://hal.inria.fr/hal-01096390
  • 38N. Glinsky, D. Mercerat, S. Lanteri, F. Peyrusse.

    A high-order discontinuous Galerkin finite-element method for site effect assessment in realistic media, in: Réunion des sciences de la terre, Pau, France, October 2014.

    https://hal.inria.fr/hal-01109586

Internal Reports

  • 39L. Fezoui, S. Lanteri.

    Discontinuous Galerkin methods for the numerical solution of the nonlinear Maxwell equations in 1d, Inria, January 2015, no 8678.

    https://hal.inria.fr/hal-01114155

Other Publications

  • 40M. Bonnasse-Gahot, S. Lanteri, J. Diaz, H. Calandra.

    Performance comparison of HDG and classical DG method for the simulation of seismic wave propagation in harmonic domain, October 2014, Journées Total-Mathias 2014.

    https://hal.inria.fr/hal-01096318
  • 41M. El Bouajaji, V. Dolean, M. J. Gander, S. Lanteri, R. Perrussel.

    Discontinuous Galerkin discretizations of Optimized Schwarz methods for solving the time-harmonic Maxwell equations, September 2014.

    https://hal.archives-ouvertes.fr/hal-01062853
References in notes
  • 42B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 43B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 44C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 45K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 46K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 47B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 48A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche..

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 49J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 50J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 51X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 52J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 53A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 54J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 55K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 56Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.