EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 3A. Bostan, M. Bousquet-Mélou, M. Kauers, S. Melczer.

    On 3-dimensional lattice walks confined to the positive octant, in: Annals of Combinatorics, March 2015, 36 p, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01063886
  • 4A. Bostan, G. Chèze, T. Cluzeau, J.-A. Weil.

    Efficient Algorithms for Computing Rational First Integrals and Darboux Polynomials of Planar Polynomial Vector Fields, in: Mathematics of Computation, December 2014, forthcoming.

    https://hal.archives-ouvertes.fr/hal-00871663
  • 5A. Bostan, K. Raschel, B. Salvy.

    Non-D-finite excursions in the quarter plane, in: Journal of Combinatorial Theory, Series A, January 2014, vol. 121, pp. 45-63. [ DOI : 10.1016/j.jcta.2013.09.005 ]

    https://hal.archives-ouvertes.fr/hal-00697386
  • 6S. Chen, F. Chyzak, R. Feng, G. Fu, Z. Li.

    On the existence of telescopers for mixed hypergeometric terms, in: Journal of Symbolic Computation, 2014.

    https://hal.inria.fr/hal-00991211
  • 7P. Dumas.

    Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated, in: Theoretical Computer Science, July 2014, pp. 25-53. [ DOI : 10.1016/j.tcs.2014.06.036 ]

    https://hal.inria.fr/hal-01065761

Invited Conferences

  • 8A. Mahboubi.

    Computer-checked mathematics: a formal proof of the odd order theorem, in: The Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Vienna, Austria, July 2014. [ DOI : 10.1145/2603088.2603090 ]

    https://hal.inria.fr/hal-01107941

International Conferences with Proceedings

  • 9A. Bostan, X. Caruso, É. Schost.

    A fast algorithm for computing the characteristic polynomial of the p-curvature, in: ISSAC - 39th International Symposium on Symbolic and Algebraic Computation, Kobe, Japan, ACM Press, July 2014. [ DOI : 10.1145/2608628.2608650 ]

    https://hal.inria.fr/hal-00994033
  • 10A. Bostan, T. Combot, M. Safey El Din.

    Computing necessary integrability conditions for planar parametrized homogeneous potentials, in: ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Kobe, Japan, ACM Press, July 2014. [ DOI : 10.1145/2608628.2608662 ]

    https://hal.inria.fr/hal-00994116
  • 11F. Chyzak, A. Mahboubi, T. Sibut-Pinote, E. Tassi.

    A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3), in: ITP - 5th International Conference on Interactive Theorem Proving, Vienna, Austria, 2014.

    https://hal.inria.fr/hal-00984057
  • 12C. Tankink.

    Asynchronous Editing for Coq, in: The Coq Workshop 2014, Vienna, Austria, July 2014.

    https://hal.inria.fr/hal-01092008
  • 13C. Tankink.

    PIDE for Asynchronous Interaction with Coq, in: User Interfaces for Theorem Provers, Vienna, Austria, July 2014, vol. 167, pp. 73 - 83. [ DOI : 10.4204/EPTCS.167.9 ]

    https://hal.inria.fr/hal-01091907

Internal Reports

  • 14P. Boutillier, S. Glondu, B. Grégoire, H. Herbelin, P. Letouzey, P.-M. Pédrot, Y. Régis-Gianas, M. Sozeau, A. Spiwack, E. Tassi.

    Coq 8.4 Reference Manual, Inria, July 2014, The Coq Development Team.

    https://hal.inria.fr/hal-01114602
  • 15G. Gonthier, A. Mahboubi, E. Tassi.

    A Small Scale Reflection Extension for the Coq system, Inria Saclay Ile de France, 2014, no RR-6455.

    https://hal.inria.fr/inria-00258384

Scientific Popularization

  • 16A. Mahboubi.

    Un ordinateur pour vérifier les preuves mathématiques, in: Images des Mathématiques, 2014, Article en partenariat avec le Séminaire Bourbaki.

    https://hal.inria.fr/hal-01062816

Other Publications

References in notes
  • 20M. Abramowitz, I. A. Stegun (editors)

    Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1992, xiv+1046 p, Reprint of the 1972 edition.
  • 21Computer Algebra Errors, Article in mathematics blog MathOverflow.

    http://mathoverflow.net/questions/11517/computer-algebra-errors
  • 22F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (editors)

    NIST Handbook of mathematical functions, Cambridge University Press, 2010.
  • 23M. Armand, B. Grégoire, A. Spiwack, L. Théry.

    Extending Coq with Imperative Features and its Application to SAT Verication, in: Interactive Theorem Proving, international Conference, ITP 2010, Edinburgh, Scotland, July 11–14, 2010, Proceedings, Lecture Notes in Computer Science, Springer, 2010.
  • 24B. Beckermann, G. Labahn.

    A uniform approach for the fast computation of matrix-type Padé approximants, in: SIAM J. Matrix Anal. Appl., 1994, vol. 15, no 3, pp. 804–823.
  • 25A. Benoit, F. Chyzak, A. Darrasse, S. Gerhold, M. Mezzarobba, B. Salvy.

    The Dynamic Dictionary of Mathematical Functions (DDMF), in: The Third International Congress on Mathematical Software (ICMS 2010), K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (editors), Lecture Notes in Computer Science, 2010, vol. 6327, pp. 35–41.

    http://dx.doi.org/10.1007/978-3-642-15582-6_7
  • 26M. Boespflug, M. Dénès, B. Grégoire.

    Full reduction at full throttle, in: First International Conference on Certified Programs and Proofs, Taiwan, December 7–9, Lecture Notes in Computer Science, Springer, 2011.
  • 27S. Boldo, C. Lelay, G. Melquiond.

    Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives, in: Certified Programs and Proofs, C. Hawblitzel, D. Miller (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7679, pp. 289-304.

    http://dx.doi.org/10.1007/978-3-642-35308-6_22
  • 28S. Boldo, G. Melquiond.

    Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in: Proceedings of the 20th IEEE Symposium on Computer Arithmetic, Tübingen, Germany, July 2011, pp. 243–252.
  • 29A. Bostan.

    Algorithmes rapides pour les polynômes, séries formelles et matrices, in: Actes des Journées Nationales de Calcul Formel, Luminy, France, 2010, pp. 75–262, Les cours du CIRM, tome 1, numéro 2.

    http://ccirm.cedram.org:80/ccirm-bin/fitem?id=CCIRM_2010__1_2_75_0
  • 30A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine.

    Globally nilpotent differential operators and the square Ising model, in: J. Phys. A: Math. Theor., 2009, vol. 42, no 12, 50 p.

    http://dx.doi.org/10.1088/1751-8113/42/12/125206
  • 31A. Bostan, S. Chen, F. Chyzak, Z. Li.

    Complexity of creative telescoping for bivariate rational functions, in: ISSAC'10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, ACM, 2010, pp. 203–210.

    http://doi.acm.org/10.1145/1837934.1837975
  • 32A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, É. Schost.

    Differential equations for algebraic functions, in: ISSAC'07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, C. W. Brown (editor), ACM Press, 2007, pp. 25–32.

    http://dx.doi.org/10.1145/1277548.1277553
  • 33A. Bostan, F. Chyzak, M. van Hoeij, L. Pech.

    Explicit formula for the generating series of diagonal 3D rook paths, in: Sém. Loth. Comb., 2011, vol. B66a, 27 p.

    http://www.emis.de/journals/SLC/wpapers/s66bochhope.html
  • 34A. Bostan, M. Kauers.

    The complete generating function for Gessel walks is algebraic, in: Proceedings of the American Mathematical Society, September 2010, vol. 138, no 9, pp. 3063–3078, With an appendix by Mark van Hoeij.
  • 35A. Bostan, P. Lairez, B. Salvy.

    Creative telescoping for rational functions using the Griffiths-Dwork method, in: ISSAC'13 - 38th International Symposium on Symbolic and Algebraic Computation, Boston, United States, Northeastern University, Boston, Massachusetts, USA, 2013, pp. 93-100. [ DOI : 10.1145/2465506.2465935 ]

    http://hal.inria.fr/hal-00777675
  • 36F. Chyzak.

    An extension of Zeilberger's fast algorithm to general holonomic functions, in: Discrete Math., 2000, vol. 217, no 1-3, pp. 115–134, Formal power series and algebraic combinatorics (Vienna, 1997).
  • 37F. Chyzak, M. Kauers, B. Salvy.

    A Non-Holonomic Systems Approach to Special Function Identities, in: ISSAC'09: Proceedings of the Twenty-Second International Symposium on Symbolic and Algebraic Computation, J. May (editor), 2009, pp. 111–118.

    http://dx.doi.org/10.1145/1576702.1576720
  • 38F. Chyzak, B. Salvy.

    Non-commutative elimination in Ore algebras proves multivariate identities, in: J. Symbolic Comput., 1998, vol. 26, no 2, pp. 187–227.
  • 39T. Coquand, G. P. Huet.

    The Calculus of Constructions, in: Inf. Comput., 1988, vol. 76, no 2/3, pp. 95-120.

    http://dx.doi.org/10.1016/0890-5401(88)90005-3
  • 40T. Coquand, C. Paulin-Mohring.

    Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer-Verlag, 1990, vol. 417.
  • 41D. Delahaye, M. Mayero.

    Dealing with algebraic expressions over a field in Coq using Maple, in: J. Symbolic Comput., 2005, vol. 39, no 5, pp. 569–592, Special issue on the integration of automated reasoning and computer algebra systems.

    http://dx.doi.org/10.1016/j.jsc.2004.12.004
  • 42F. Garillot, G. Gonthier, A. Mahboubi, L. Rideau.

    Packaging Mathematical Structures, in: Theorem Proving in Higher-Order Logics, S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (editors), Lecture Notes in Computer Science, Springer, 2009, vol. 5674, pp. 327–342.
  • 43J. von zur. Gathen, J. Gerhard.

    Modern computer algebra, 2nd, Cambridge University Press, New York, 2003, xiv+785 p.
  • 44G. Gonthier.

    Formal proofs—the four-colour theorem, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1382-1393.
  • 45G. Gonthier, A. Mahboubi.

    An introduction to small scale reflection in Coq, in: Journal of Formalized Reasoning, 2010, vol. 3, no 2, pp. 95–152.
  • 46G. Gonthier, A. Mahboubi, E. Tassi.

    A Small Scale Reflection Extension for the Coq system, Inria, 2008, no RR-6455.

    http://hal.inria.fr/inria-00258384
  • 47G. Gonthier, E. Tassi.

    A language of patterns for subterm selection, in: ITP, LNCS, 2012, vol. 7406, pp. 361–376.
  • 48B. Grégoire, A. Mahboubi.

    Proving Equalities in a Commutative Ring Done Right in Coq, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, Lecture Notes in Computer Science, Springer, 2005, vol. 3603, pp. 98–113.
  • 49T. Hales.

    Formal proof, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1370-1380.
  • 50J. Harrison.

    A HOL Theory of Euclidean space, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, J. Hurd, T. Melham (editors), Lecture Notes in Computer Science, Springer-Verlag, 2005, vol. 3603.
  • 51J. Harrison.

    Formalizing an analytic proof of the prime number theorem, in: Journal of Automated Reasoning, 2009, vol. 43, pp. 243–261, Dedicated to Mike Gordon on the occasion of his 60th birthday.
  • 52J. Harrison.

    Theorem proving with the real numbers, CPHC/BCS distinguished dissertations, Springer, 1998, I p.
  • 53J. Harrison.

    A Machine-Checked Theory of Floating Point Arithmetic, in: Theorem Proving in Higher Order Logics: 12th International Conference, TPHOLs'99, Nice, France, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Théry (editors), Lecture Notes in Computer Science, Springer-Verlag, 1999, vol. 1690, pp. 113–130.
  • 54J. Harrison, L. Théry.

    A Skeptic's Approach to Combining HOL and Maple, in: J. Autom. Reason., December 1998, vol. 21, no 3, pp. 279–294.

    http://dx.doi.org/10.1023/A:1006023127567
  • 55F. Johansson.

    Another Mathematica bug, Article on personal blog.

    http://fredrik-j.blogspot.fr/2009/07/another-mathematica-bug.html
  • 56C. Koutschan.

    A fast approach to creative telescoping, in: Math. Comput. Sci., 2010, vol. 4, no 2-3, pp. 259–266.

    http://dx.doi.org/10.1007/s11786-010-0055-0
  • 57A. Mahboubi.

    Implementing the cylindrical algebraic decomposition within the Coq system, in: Mathematical Structures in Computer Science, 2007, vol. 17, no 1, pp. 99–127.
  • 58R. Matuszewski, P. Rudnicki.

    Mizar: the first 30 years, in: Mechanized Mathematics and Its Applications, 2005, vol. 4.
  • 59M. Mayero.

    Problèmes critiques et preuves formelles, Université Paris 13, novembre 2012, Habilitation à Diriger des Recherches.
  • 60M. Mezzarobba.

    NumGfun: a package for numerical and analytic computation and D-finite functions, in: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, ACM, 2010, pp. 139–146.

    http://dx.doi.org/10.1145/1837934.1837965
  • 61P. Paule, M. Schorn.

    A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities, in: J. Symbolic Comput., 1995, vol. 20, no 5-6, pp. 673–698, Symbolic computation in combinatorics Δ1 (Ithaca, NY, 1993).

    http://dx.doi.org/10.1006/jsco.1995.1071
  • 62B. Petersen.

    Maple, Personal web site.
  • 63P. Rudnicki, A. Trybulec.

    On the Integrity of a Repository of Formalized Mathematics, in: Proceedings of the Second International Conference on Mathematical Knowledge Management, London, UK, MKM '03, Springer-Verlag, 2003, pp. 162–174.

    http://dl.acm.org/citation.cfm?id=648071.748518
  • 64B. Salvy, P. Zimmermann.

    Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, in: ACM Trans. Math. Software, 1994, vol. 20, no 2, pp. 163–177.
  • 65N. J. A. Sloane, S. Plouffe.

    The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995.
  • 66The Coq Development Team.

    The Coq Proof Assistant: Reference Manual.

    http://coq.inria.fr/doc/
  • 67The Mathematical Component Team.

    A Formalization of the Odd Order Theorem using the Coq proof assistant, September 2012.

    http://www.msr-inria.fr/projects/mathematical-components/
  • 68L. Théry.

    A Machine-Checked Implementation of Buchberger's Algorithm, in: J. Autom. Reasoning, 2001, vol. 26, no 2, pp. 107-137.

    http://dx.doi.org/10.1023/A:1026518331905
  • 69K. Wegschaider.

    Computer generated proofs of binomial multi-sum identities, RISC, J. Kepler University, May 1997, 99 p.
  • 70S. Wolfram.

    Mathematica: A system for doing mathematics by computer (2nd ed.), Addison-Wesley, 1992, I p.
  • 71D. Zeilberger.

    Opinion 94: The Human Obsession With “Formal Proofs” is a Waste of the Computer's Time, and, Even More Regretfully, of Humans' Time, 2009.

    http://www.math.rutgers.edu/~zeilberg/Opinion94.html
  • 72D. Zeilberger.

    A holonomic systems approach to special functions identities, in: J. Comput. Appl. Math., 1990, vol. 32, no 3, pp. 321–368.
  • 73D. Zeilberger.

    The method of creative telescoping, in: J. Symbolic Comput., 1991, vol. 11, no 3, pp. 195–204.