EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.

    Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]

    https://hal.archives-ouvertes.fr/hal-00776629
  • 2J.-L. Florenciano, P. Bruel.

    LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]

    https://hal.inria.fr/hal-01353952
  • 3E. Franquet, V. Perrier.

    Runge-Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter, in: Computers and Fluids, March 2012, vol. 65, pp. 2-7. [ DOI : 10.1016/j.compfluid.2012.02.021 ]

    https://hal.inria.fr/hal-00739446
  • 4E. Franquet, V. Perrier.

    Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, pp. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]

    https://hal.inria.fr/hal-00684427
  • 5J.-M. Hérard, J. Jung.

    An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématique, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]

    https://hal.inria.fr/hal-01233251
  • 6R. Manceau.

    Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: Int. J. Heat Fluid Fl., 2015, vol. 51, pp. 195-220.

    http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.09.002
  • 7Y. Moguen, P. Bruel, E. Dick.

    Semi-implicit characteristic-based boundary treatment for acoustics in low Mach number flows, in: Journal of Computational Physics, 2013, vol. 255, pp. 339-361. [ DOI : 10.1016/j.jcp.2013.08.019 ]

    http://hal.inria.fr/hal-00929713
  • 8Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.

    Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]

    https://hal.inria.fr/hal-01096422
  • 9B. de Laage de Meux, B. Audebert, R. Manceau, R. Perrin.

    Anisotropic Linear Forcing for synthetic turbulence generation in LES and hybrid RANS/LES modeling, in: Phys. Fluids, 2015, vol. 27, no 035115.

    http://dx.doi.org/10.1063/1.4916019
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 10J.-F. Wald.

    Adaptive wall treatment for a second moment closure in the industrial context, Université de Pau et des Pays de l'Adour, May 2016.

    https://hal.inria.fr/tel-01415106

Articles in International Peer-Reviewed Journals

  • 11F. Dehoux, S. Benhamadouche, R. Manceau.

    An elliptic blending differential flux model for natural, mixed and forced convection, in: International Journal of Heat and Fluid Flow, 2016. [ DOI : 10.1016/j.ijheatfluidflow.2016.09.003 ]

    https://hal.inria.fr/hal-01391900
  • 12S. Dellacherie, J. Jung, P. Omnes.

    Preliminary results for the study of the Godunov Scheme Applied to the Linear Wave Equation with Porosity at Low Mach Number, in: ESAIM: Proceedings and Surveys, January 2016. [ DOI : 10.1051/proc/201552006 ]

    http://hal.upmc.fr/hal-01130404
  • 13S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.

    Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]

    https://hal.archives-ouvertes.fr/hal-00776629
  • 14K. El Omari, Y. Le Guer, P. Bruel.

    Analysis of micro-dispersed PCM-composite boards behavior in a buiding's wall for different seasons, in: Journal of Building Engineering, 2016, vol. 7, 11 p. [ DOI : 10.1016/j.jobe.2016.07.013 ]

    https://hal.inria.fr/hal-01353957
  • 15J.-L. Florenciano, P. Bruel.

    LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]

    https://hal.inria.fr/hal-01353952
  • 16J.-M. Hérard, J. Jung.

    An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématique, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]

    https://hal.inria.fr/hal-01233251

Invited Conferences

  • 17R. Manceau.

    Progress in Hybrid Temporal LES (plenary lecture), in: 6th Symp. Hybrid RANS-LES Methods, Strasbourg, France, September 2016.

    https://hal.inria.fr/hal-01391899

Conferences without Proceedings

  • 18S. Delmas, V. Perrier, P. Bruel.

    Behaviour of discontinuous Galerkin methods for steady and unsteady compressible flow in the low Mach regime, in: European Congress on Computational Methods in Applied Sciences and Engineering, Herkonissos, Crête, Greece, June 2016.

    https://hal.inria.fr/hal-01419110
  • 19A. Mazaheri, V. Perrier, M. Ricchiuto.

    Hyperbolic Discontinuous Galerkin Scheme for Advection-Diffusion: Comparisons with BR2 & Symmetric IP Schemes, in: AIAA Aviation and Aeronautics Forum and Exposition, Denver (CO), United States, June 2017.

    https://hal.inria.fr/hal-01390704

Internal Reports

  • 20Y. Moguen, R. Manceau, P. Bruel.

    Développement d'une méthodologie efficace de calcul des pertes de charge dans les injecteurs de moteurs aéronautiques, Université de Pau et des Pays de l'Adour, August 2016.

    https://hal.inria.fr/hal-01391897

Other Publications

  • 21P. Bruel.

    Propagation de flammes turbulentes prémélangées en régime de flammelette, December 2016, Séminaire du Groupe de travail du LRC Manon - Thème "Turbulence"- Université Pierre et Marie Curie.

    https://hal.inria.fr/hal-01410437
  • 22P. Bruel.

    Recent developments regarding the simulation of low Mach flows, March 2016, Journées Ondes du Sud Ouest.

    https://hal.inria.fr/hal-01410311
  • 23R. Manceau.

    An introduction to hybrid temporal LES for turbulent Flows, March 2016, Seminar, Politecnico di Milano, Italy.

    https://hal.inria.fr/hal-01391898
  • 24V. Perrier.

    Report on DNS of isothermal flows with adiabatic walls, January 2016, Second livrable de l'UPPA dans le cadre du projet IMPACT-AE.

    https://hal.inria.fr/hal-01419099
  • 25V. Perrier.

    Report on DNS of non-isothermal flows with adiabatic walls, June 2016, Troisième livrable de l'UPPA dans le cadre du programme européen IMPACT-AE.

    https://hal.inria.fr/hal-01419100
  • 26J.-F. Wald, S. Benhamadouche, R. Manceau.

    Validation of adaptive wall treatment for the EB-RSM, April 2016, Code_Saturne user meeting, Poster.

    https://hal.inria.fr/hal-01391895
References in notes
  • 27D. Amenga-Mbengoue, D. Genet, C. Lachat, E. Martin, M. Mogé, V. Perrier, F. Renac, M. Ricchiuto, F. Rue.

    Comparison of high order algorithms in Aerosol and Aghora for compressible flows, in: ESAIM: Proceedings, December 2013, vol. 43, pp. 1-16.

    http://hal.inria.fr/hal-00917411
  • 28D. N. Arnold.

    An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760.
  • 29D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.

    Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779.
  • 30C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier.

    StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures, in: Concurr. Comput. : Pract. Exper., February 2011, vol. 23, no 2, pp. 187–198.

    http://dx.doi.org/10.1002/cpe.1631
  • 31F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.

    On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]

    http://www.sciencedirect.com/science/article/pii/S0021999111005055
  • 32F. Bassi, A. Crivellini, S. Rebay, M. Savini.

    Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
  • 33F. Bassi, S. Rebay.

    A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.

    http://dx.doi.org/10.1006/jcph.1996.5572
  • 34F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.

    A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109.
  • 35B. Cockburn, S. Hou, C.-W. Shu.

    The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.

    http://dx.doi.org/10.2307/2008501
  • 36B. Cockburn, S. Y. Lin, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
  • 37B. Cockburn, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.

    http://dx.doi.org/10.2307/2008474
  • 38B. Cockburn, C.-W. Shu.

    The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
  • 39B. Cockburn, C.-W. Shu.

    The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.

    http://dx.doi.org/10.1006/jcph.1998.5892
  • 40S. S. Colis.

    Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
  • 41M. Feistauer, V. Kučera.

    On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.

    http://dx.doi.org/10.1016/j.jcp.2007.01.035
  • 42U. Frisch.

    Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995.
  • 43M. Giles.

    Non-Reflecting Boundary Conditions for Euler Equation Calculation, in: The American Institute of Aeronautics and Astronautics Journal, 1990, vol. 42, no 12.
  • 44R. Hartmann, P. Houston.

    Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
  • 45A. Jameson, M. Fatica.

    Using Computational Fluid Dynamics for Aerodynamics, in: National Research Council Workshop on "The Future of Supercomputing", 2003.
  • 46C. Johnson, A. Szepessy, P. Hansbo.

    On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.

    http://dx.doi.org/10.2307/2008684
  • 47A. Klöckner, T. Warburton, J. Bridge, J. Hesthaven.

    Nodal discontinuous Galerkin methods on graphics processors, in: Journal of Computational Physics, 2009, vol. 228, no 21, pp. 7863 - 7882. [ DOI : 10.1016/j.jcp.2009.06.041 ]

    http://www.sciencedirect.com/science/article/pii/S0021999109003647
  • 48D. Knoll, D. Keyes.

    Jacobian-free Newton-Krylov methods: a survey of approaches and applications, in: Journal of Computational Physics, 2004, vol. 193, no 2, pp. 357 - 397. [ DOI : 10.1016/j.jcp.2003.08.010 ]

    http://www.sciencedirect.com/science/article/pii/S0021999103004340
  • 49P. Lesaint, P.-A. Raviart.

    On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33.
  • 50F. Lörcher, G. Gassner, C.-D. Munz.

    An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.

    http://dx.doi.org/10.1016/j.jcp.2008.02.015
  • 51A. C. Muresan, Y. Notay.

    Analysis of Aggregation-Based Multigrid, in: SIAM J. Sci. Comput., March 2008, vol. 30, no 2, pp. 1082–1103.

    http://dx.doi.org/10.1137/060678397
  • 52T. Poinsot, S. Lele.

    Boundary conditions for direct simulations of compressible viscous flows, in: Journal of Computational Physics, 1992, vol. 101, pp. 104-129.
  • 53W. Reed, T. Hill.

    Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
  • 54H. Sutter.

    The free lunch is over: A fundamental turn toward concurrency in software, in: Dr. Dobb’s Journal, 2005.
  • 55K. W. Thompson.

    Time-dependent boundary conditions for hyperbolic systems, {II}, in: Journal of Computational Physics, 1990, vol. 89, no 2, pp. 439 - 461. [ DOI : 10.1016/0021-9991(90)90152-Q ]

    http://www.sciencedirect.com/science/article/pii/002199919090152Q
  • 56I. Toulopoulos, J. A. Ekaterinaris.

    Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method, in: Journal of Computational Physics, 2011, vol. 230, no 15, pp. 5974 - 5995. [ DOI : 10.1016/j.jcp.2011.04.008 ]

    http://www.sciencedirect.com/science/article/pii/S0021999111002324
  • 57P. Wesseling.

    An introduction to multigrid methods, Pure and applied mathematics, J. Wiley, Chichester, New York, 1992.

    http://opac.inria.fr/record=b1088946
  • 58I. Yavneh.

    Why Multigrid Methods Are So Efficient, in: Computing in Science and Engg., November 2006, vol. 8, no 6, pp. 12–22.

    http://dx.doi.org/10.1109/MCSE.2006.125
  • 59J. van der Vegt, S. Rhebergen.

    hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, in: Journal of Computational Physics, 2012, vol. 231, no 22, pp. 7537 - 7563. [ DOI : 10.1016/j.jcp.2012.05.038 ]

    http://www.sciencedirect.com/science/article/pii/S0021999112003129