Bibliography
Major publications by the team in recent years
-
1S. Arlot, A. Celisse.
Segmentation of the mean of heteroscedastic data via cross-validation, in: Statistics and Computing, 2010, vol. 21, pp. 613–632. -
2P. Bathia, S. Iovleff, G. Govaert.
An R Package and C++ library for Latent block models: Theory, usage and applications, in: Journal of Statistical Software, 2016.
https://hal.archives-ouvertes.fr/hal-01285610 -
3C. Biernacki, G. Celeux, G. Govaert.
Exact and Monte Carlo Calculations of Integrated Likelihoods for the Latent Class Model, in: Journal of Statistical Planning and Inference, 2010, vol. 140, pp. 2991-3002.
https://hal.archives-ouvertes.fr/hal-00554344 -
4C. Biernacki, J. Jacques.
A generative model for rank data based on an insertion sorting algorithm, in: Computational Statistics and Data Analysis, 2013, vol. 58, pp. 162-176. [ DOI : 10.1016/j.csda.2012.08.008 ]
https://hal.archives-ouvertes.fr/hal-00441209 -
5C. Biernacki, J. Jacques.
Model-Based Clustering of Multivariate Ordinal Data Relying on a Stochastic Binary Search Algorithm, in: Statistics and Computing, 2016, vol. 26, no 5, pp. 929-943.
https://hal.inria.fr/hal-01052447 -
6A. Celisse, J.-J. Daudin, L. Pierre.
Consistency of maximum likelihood and variational estimators in stochastic block model, in: Electronic Journal of Statistics, 2012, pp. 1847–1899.
http://projecteuclid.org/handle/euclid.ejs -
7M. Giacofci, S. Lambert-Lacroix, G. Marot, F. Picard.
Wavelet-based clustering for mixed-effects functional models in high dimension, in: Biometrics, March 2013, vol. 69, no 1, pp. 31-40. [ DOI : 10.1111/j.1541-0420.2012.01828.x ]
http://hal.inria.fr/hal-00782458 -
8J. Jacques, C. Preda.
Funclust: a curves clustering method using functional random variables density approximation, in: Neurocomputing, 2013, vol. 112, pp. 164-171.
https://hal.archives-ouvertes.fr/hal-00628247 -
9M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering of Gaussian copulas for mixed data, in: Communications in Statistics - Theory and Methods, December 2016.
https://hal.archives-ouvertes.fr/hal-00987760 -
10V. Vandewalle, C. Biernacki, G. Celeux, G. Govaert.
A predictive deviance criterion for selecting a generative model in semi-supervised classification, in: Computational Statistics and Data Analysis, 2013, vol. 64, pp. 220-236.
https://hal.inria.fr/inria-00516991
Articles in International Peer-Reviewed Journals
-
11A. Amiri, S. Dabo-Niang, M. Yahaya.
Non-parametric recursive density estimation for spatial data, in: Comptes Rendus Mathématique, 2016. [ DOI : 10.1016/j.crma.2015.10.010 ]
https://hal.inria.fr/hal-01425935 -
12P. Bathia, S. Iovleff, G. Govaert.
An R Package and C++ library for Latent block models: Theory, usage and applications, in: Journal of Statistical Software, 2016.
https://hal.archives-ouvertes.fr/hal-01285610 -
13C. Biernacki, J. Jacques.
Model-Based Clustering of Multivariate Ordinal Data Relying on a Stochastic Binary Search Algorithm, in: Statistics and Computing, 2016, vol. 26, no 5, pp. 929-943.
https://hal.inria.fr/hal-01052447 -
14S. Dabo-Niang, S. Guillas, C. Ternynck.
More efficient kernel functional regression estimation with correlated errors, in: Journal of Multivariate Analysis, 2016. [ DOI : 10.1016/j.jmva.2016.01.007 ]
https://hal.inria.fr/hal-01425933 -
15S. Dabo-Niang, A. Maina, T. Soubdhan, H. Ould-Baba.
Predictive spatio-temporal model for spatially sparse global solar radiation data, in: Energy, June 2016, vol. 111, pp. 599–608. [ DOI : 10.1016/j.energy.2016.06.004 ]
https://hal.inria.fr/hal-01425930 -
16S. Dabo-Niang, C. Ternynck, A.-F. Yao.
Nonparametric prediction in the multivariate spatial context, in: Journal of Nonparametric Statistics, 2016, vol. 28, no 2, pp. 428-458. [ DOI : 10.1080/10485252.2016.01.007 ]
https://hal.inria.fr/hal-01425932 -
17A. Dermoune, C. Preda.
Parametrizations, fixed and random effects, in: Journal of Multivariate Analysis, November 2016. [ DOI : 10.1016/j.jmva.2016.11.001 ]
https://hal.archives-ouvertes.fr/hal-01424782 -
18C. Herbaux, E. Bertrand, G. Marot, C. Roumier, N. Poret, V. Soenen, O. Nibourel, C. Roche-Lestienne, N. Broucqsault, S. Galiègue-Zouitina, E. Boyle, G. Fouquet, A. Renneville, S. Tricot, F. Morschhauser, C. Preudhomme, B. Quesnel, S. Poulain, X. Leleu.
BACH2 promotes indolent clinical presentation in Waldenström macroglobulinemia, in: Oncotarget, 2016.
https://hal.inria.fr/hal-01423307 -
19J. Jacques, C. Ruckebusch.
Model-based co-clustering for hyperspectral images, in: Journal of Spectral Imaging, 2016.
https://hal.archives-ouvertes.fr/hal-01367941 -
20M. Marbac, C. Biernacki, V. Vandewalle.
Latent class model with conditional dependency per modes to cluster categorical data, in: Advances in Data Analysis and Classification, June 2016, vol. 10, no 2, pp. 183–207. [ DOI : 10.1007/s11634-016-0250-1 ]
https://hal.archives-ouvertes.fr/hal-00950112 -
21M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering of Gaussian copulas for mixed data, in: Communications in Statistics - Theory and Methods, December 2016.
https://hal.archives-ouvertes.fr/hal-00987760 -
22P. Masselot, S. Dabo-Niang, F. Chebana, T. B. Ouarda.
Streamflow forecasting using functional regression, in: Journal of Hydrology, April 2016, vol. 538, pp. 754–766. [ DOI : 10.1016/j.jhydrol.2016.04.048 ]
https://hal.inria.fr/hal-01425931 -
23C. Ternynck, M. Ali Ben Alaya, F. Chebana, S. Dabo-Niang, O. Taha.
Streamflow hydrology classification using functional data analysis, in: Journal of Hydrometeorology, 2016. [ DOI : 10.1175/JHM-D-14-0200.1 ]
https://hal.inria.fr/hal-01425934 -
24L. Yengo, J. Jacques, C. Biernacki, M. Canouil.
Variable Clustering in High-Dimensional Linear Regression: The R Package clere, in: The R Journal, 2016, vol. 8, no 1, pp. 92-106.
https://hal.archives-ouvertes.fr/hal-00940929
Invited Conferences
-
25H. Alawieh, N. Wicker, C. Biernacki.
Projection under pairwise distance control, in: 9th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2016, ERCIM 2016), Séville, Spain, December 2016.
https://hal.archives-ouvertes.fr/hal-01420681 -
26C. Biernacki.
BigStat for Big Data: Big Data clustering through the BigStat SaaS platform, in: Journée scientifique « Big Data & Data science », Tunis, Tunisia, October 2016.
https://hal.archives-ouvertes.fr/hal-01420650 -
27C. Biernacki, M. Brunin, A. Celisse.
Computation time/accuracy trade-off and linear regression, in: 9th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2016, ERCIM 2016), Séville, Spain, December 2016.
https://hal.archives-ouvertes.fr/hal-01420659 -
28C. Biernacki, G. Castellan, S. Chretien, B. Guedj, V. Vandewalle.
Pitfalls in Mixtures from the Clustering Angle, in: Working Group on Model-Based Clustering Summer Session, Paris, France, July 2016.
https://hal.archives-ouvertes.fr/hal-01419755 -
29C. Biernacki, A. Lourme.
Unifying Data Units and Models in Statistics: Focus on (Co-)Clustering, in: Workshop on Model-based Clustering and Classification (MBC2), Catania, Italy, September 2016.
https://hal.archives-ouvertes.fr/hal-01420657 -
30J. Jacques, C. Biernacki.
Model-Based Co-clustering for Ordinal Data, in: Working Group on Model-Based Clustering Summer Session, Paris, France, July 2016.
https://hal.archives-ouvertes.fr/hal-01420648 -
31J. Jacques, C. Biernacki.
Model-based co-clustering for ordinal data, in: 23th Summer Working Group on Model-Based Clustering of the Department of Statistics of the University of Washington, Paris, France, July 2016.
https://hal.inria.fr/hal-01383912
Conferences without Proceedings
-
32M. Baelde, C. Biernacki, R. Greff.
A mixture model-based real-time audio sources classification method, in: The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP2017, New Orleans, United States, March 2017.
https://hal.archives-ouvertes.fr/hal-01420677 -
33A.-L. Bedenel, C. Biernacki, L. Jourdan.
Appariement de descripteurs evoluant en temps Application a la comparaison d'assurance en ligne, in: 48èmes Journées de Statistique de la SFdS, Montpellier, France, May 2016.
https://hal.archives-ouvertes.fr/hal-01420667 -
34M. Brunin, C. Biernacki, A. Celisse.
Compromis précision-temps de calcul appliqué au problèeme de détection de ruptures, in: 48èmes Journées de Statistique de la SFdS, Montpellier, France, May 2016.
https://hal.archives-ouvertes.fr/hal-01420669 -
35J. Jacques, C. Biernacki.
Model-based co-clustering for ordinal data, in: 48èmes Journées de Statistique organisée par la Société Française de Statistique, Montpellier, France, 2016.
https://hal.archives-ouvertes.fr/hal-01383927 -
36J. Jacques, C. Ruckebusch.
Co-clustering for hyperspectral images, in: 6th International Conference in Spectral Imaging, Chamonix, France, July 2016.
https://hal.archives-ouvertes.fr/hal-01383918
Other Publications
-
37H. Alawieh, N. Wicker, C. Biernacki.
Projection under pairwise distance controls, December 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01420662 -
38P. Alquier, B. Guedj.
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization, August 2016, working paper or preprint.
https://hal.inria.fr/hal-01251878 -
39P. Alquier, B. Guedj.
Simpler PAC-Bayesian Bounds for Hostile Data, October 2016, working paper or preprint.
https://hal.inria.fr/hal-01385064 -
40S. Arlot, A. Celisse, Z. Harchaoui.
A kernel multiple change-point algorithm via model selection, March 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-00671174 -
41A. Celisse, B. Guedj.
Stability revisited: new generalisation bounds for the Leave-one-Out, August 2016, working paper or preprint.
https://hal.inria.fr/hal-01355365 -
42A. Celisse, G. Marot, M. Pierre-Jean, G. Rigaill.
New efficient algorithms for multiple change-point detection with kernels, September 2016, working paper or preprint.
https://hal.inria.fr/hal-01413230 -
43S. Dabo-Niang, M. S. Ahmed.
Generalized Functional Linear Models under Choice-Based Sampling, July 2016, working paper or preprint.
https://hal.inria.fr/hal-01345918 -
44M. A. Hasnat, J. VELCIN, S. Bonnevay, J. Jacques.
Evolutionary clustering for categorical data using parametric links among multinomial mixture models, March 2016, working paper or preprint.
https://hal.inria.fr/hal-01204613 -
45L. Li, B. Guedj, S. Loustau.
Clustering en ligne : le point de vue PAC-bayésien, January 2016, working paper or preprint.
https://hal.inria.fr/hal-01264934 -
46L. Li, B. Guedj, S. Loustau.
PAC-Bayesian Online Clustering, January 2016, working paper or preprint.
https://hal.inria.fr/hal-01264233 -
47Y. B. Slimen, S. Allio, J. Jacques.
Model-Based Co-clustering for Functional Data, December 2016, working paper or preprint.
https://hal.inria.fr/hal-01422756 -
48V. Vandewalle, C. Preda.
Clustering categorical functional data Application to medical discharge letters Medical discharge letters, July 2016, Working Group on Model-Based Clustering Summer Session: Paris, July 17-23, 2016, Poster.
https://hal.inria.fr/hal-01424950 -
49V. Vandewalle.
Simultaneous dimension reduction and multi-objective clustering using probabilistic factorial discriminant analysis, December 2016, CMStatistics 2016.
https://hal.inria.fr/hal-01424965