EN FR
EN FR


Section: Overall Objectives

Developing future standards

Linear mixed-effects models have been well-used in statistics for a long time. They are a classical approach, essentially relying on matrix calculations in Gaussian models. Whereas a solid theoretical base has been developed for such models, nonlinear mixed-effects models (NLMEM) have received much less attention in the statistics community, even though they have been applied to many domains of interest. It has thus been the users of these models, such as pharmacometricians, who have taken them and developed methods, without really looking to develop a clean theoretical framework or understand the mathematical properties of the methods. This is why a standard estimation method in NLMEM is to linearize the model, and few people have been interested in understanding the properties of estimators obtained in this way.

Statisticians and pharmacometricians frequently realize the need to create bridges between these two communities. We are entirely convinced that this requires the development of new standards for population modeling that can be widely accepted by these various communities. These standards include the language used for encoding a model, the approach for representing a model and the methods for using it:

  • The approach. Our approach consists in seeing a model as hierarchical, represented by a joint probability distribution. This joint distribution can be decomposed into a product of conditional distributions, each associated with a submodel (model for observations, individual parameters, etc.). Tasks required of the modeler are thus related to these probability distributions.

  • The methods. Many tests have shown that algorithms implemented in Monolix are the most reliable, all the while being extremely fast. In fact, these algorithms are precisely described and published in well known statistical journals. In particular, the SAEM algorithm, used for calculating the maximum likelihood estimation of population parameters, has shown its worth in numerous situations. Its mathematical convergence has also been proven under quite general hypotheses.

  • The language. Mlxtran is used by Monolix and other modeling tools and is today by far the most advanced language for representing models. Initially developed for representing pharmacometric models, its syntax also allows it to easily code dynamical systems defined by a system of ODEs, and statistical models involving continuous, discrete and survival variables. This flexibility is a true advantage both for numerical modelers and statisticians.