Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1Y. A. Barsamian, J. Bernier, S. A. Hirstoaga, M. Mehrenberger.
Verification of 2D × 2D and two-species Vlasov-Poisson solvers, in: ESAIM: Proceedings and Surveys, 2018, vol. 63, pp. 78-108.
https://hal.archives-ouvertes.fr/hal-01668744 -
2S. Baumstark, E. Faou, K. Schratz.
Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to classical splitting schemes in the nonlinear Schrödinger limit, in: Mathematics of Computation, 2018, vol. 87, no 311, pp. 1227-1254, https://arxiv.org/abs/1606.04652. [ DOI : 10.1090/mcom/3263 ]
https://hal.archives-ouvertes.fr/hal-01331949 -
3C.-E. Bréhier, A. Debussche.
Kolmogorov Equations and Weak Order Analysis for SPDES with Nonlinear Diffusion Coefficient, in: Journal de Mathématiques Pures et Appliquées, 2018, vol. 116, pp. 193-254, https://arxiv.org/abs/1703.01095. [ DOI : 10.1016/j.matpur.2018.08.010 ]
https://hal.archives-ouvertes.fr/hal-01481966 -
4F. Castella, P. Chartier, J. Sauzeau.
A formal series approach to the center manifold theorem, in: Foundations of Computational Mathematics, 2018, vol. 18, no 6, pp. 1397–1434. [ DOI : 10.1007/s10208-017-9371-y ]
https://hal.inria.fr/hal-01279715 -
5S. Cerrai, A. Debussche.
Large deviations for the dynamic model, in: Applied Mathematics and Optimization, 2018, pp. 1–22. [ DOI : 10.1007/s00245-017-9459-4 ]
https://hal.archives-ouvertes.fr/hal-01518465 -
6S. Cerrai, A. Debussche.
Large deviations for the two-dimensional stochastic Navier-Stokes equation with vanishing noise correlation, in: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2018, pp. 1-29.
https://hal.archives-ouvertes.fr/hal-01942681 -
7P. Chartier, N. Crouseilles, X. Zhao.
Numerical methods for the two-dimensional Vlasov–Poisson equation in the finite Larmor radius approximation regime, in: Journal of Computational Physics, December 2018, vol. 375, pp. 619-640. [ DOI : 10.1016/j.jcp.2018.09.007 ]
https://hal.archives-ouvertes.fr/hal-01920104 -
8P. Chartier, L. Le Treust, F. Méhats.
Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2018, pp. 1-30, https://arxiv.org/abs/1601.04825.
https://hal.archives-ouvertes.fr/hal-01257753 -
9P. Chartier, M. Lemou, F. Méhats, G. Vilmart.
A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations, in: Foundations of Computational Mathematics, 2018.
https://hal.archives-ouvertes.fr/hal-01666472 -
10A. Crestetto, N. Crouseilles, M. Lemou.
A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling, in: Communications in Mathematical Sciences, 2018, vol. 16, no 4, pp. 887-911. [ DOI : 10.4310/CMS.2018.v16.n4.a1 ]
https://hal.archives-ouvertes.fr/hal-01439288 -
11N. Crouseilles, L. Einkemmer, M. Prugger.
An exponential integrator for the drift-kinetic model, in: Computer Physics Communications, 2018, vol. 224, pp. 144-153, https://arxiv.org/abs/1705.09923. [ DOI : 10.1016/j.cpc.2017.11.003 ]
https://hal.archives-ouvertes.fr/hal-01538450 -
12N. Crouseilles, S. A. Hirstoaga, X. Zhao.
Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic field, in: Computer Physics Communications, 2018, vol. 222, pp. 136-151. [ DOI : 10.1016/j.cpc.2017.09.027 ]
https://hal.archives-ouvertes.fr/hal-01496854 -
13A. Debussche, H. Weber.
The Schrödinger equation with spatial white noise potential, in: Electronic Journal of Probability, 2018, vol. 23, pp. 1-16.
https://hal.archives-ouvertes.fr/hal-01942694 -
14E. Faou, R. Horsin, F. Rousset.
On numerical Landau damping for splitting methods applied to the Vlasov-HMF model, in: Foundations of Computational Mathematics, 2018, vol. 18, no 1, pp. 97-134, https://arxiv.org/abs/1510.06555. [ DOI : 10.1007/s10208-016-9333-9 ]
https://hal.archives-ouvertes.fr/hal-01219115 -
15E. Faou, T. Jézéquel.
Convergence of a normalized gradient algorithm for computing ground states, in: IMA Journal of Numerical Analysis, 2018, vol. 38, no 1, pp. 360-376, https://arxiv.org/abs/1603.02658. [ DOI : 10.1093/imanum/drx009 ]
https://hal.inria.fr/hal-01284679 -
16A. Soffer, X. Zhao.
Modulation equations approach for solving vortex and radiation in nonlinear Schrodinger equation, in: IMA Journal of Applied Mathematics, 2018, vol. 83, no 3, pp. 496–513, https://arxiv.org/abs/1605.00888 - 14 pages, 7 figures. [ DOI : 10.1093/imamat/hxy016 ]
https://hal.archives-ouvertes.fr/hal-01328959 -
17T. Wang, X. Zhao, J. Jiang.
Unconditional and optimal -error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions, in: Advances in Computational Mathematics, 2018, vol. 44, no 2, pp. 477-503. [ DOI : 10.1007/s10444-017-9557-5 ]
https://hal.archives-ouvertes.fr/hal-01576947 -
18T. Wang, X. Zhao.
Unconditional -convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions, in: Calcolo, September 2018, vol. 55, no 3.
https://hal.archives-ouvertes.fr/hal-01940369 -
19Y. Wang, X. Zhao.
Symmetric high order Gautschi-type exponential wave integrators pseudospectral method for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, in: International Journal of Numerical Analysis and Modeling, 2018, vol. 15, no 3, pp. 405-427, https://arxiv.org/abs/1611.01550 - 24 pages, 2 figures.
https://hal.archives-ouvertes.fr/hal-01397333
Other Publications
-
20P. Alphonse, J. Bernier.
Smoothing Properties of Fractional Ornstein-Uhlenbeck Semigroups and Null-Controllability, October 2018, https://arxiv.org/abs/1810.02629 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01888835 -
21N. Ayi, E. Faou.
Analysis of an asymptotic preserving scheme for stochastic linear kinetic equations in the diffusion limit, 2018, https://arxiv.org/abs/1803.06130 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01734515 -
22J. Bernier.
Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on , November 2018, https://arxiv.org/abs/1805.02468 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01785953 -
23J. Bernier, E. Faou.
Existence and stability of traveling waves for discrete nonlinear Schroedinger equations over long times, May 2018, https://arxiv.org/abs/1805.03578 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01788398 -
24J. Bernier, E. Faou, B. Grebert.
Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, December 2018, https://arxiv.org/abs/1812.11414 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01965082 -
25C. Buet, B. Despres, G. Morel.
Trefftz Discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport, December 2018, working paper or preprint.
https://hal.sorbonne-universite.fr/hal-01964528 -
26P. Chartier, N. Crouseilles, M. Lemou, F. Méhats, X. Zhao.
Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field, February 2018, working paper or preprint.
https://hal.inria.fr/hal-01703477 -
27P. Chartier, M. Lemou, F. Méhats, G. Vilmart.
Highly-oscillatory problems with time-dependent vanishing frequency, July 2018, https://arxiv.org/abs/1807.07835 - working paper or preprint.
https://hal.inria.fr/hal-01845614 -
28A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou.
Time diminishing schemes (TDS) for kinetic equations in the diffusive scaling, July 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01849671 -
29N. Crouseilles, S. Jin, M. Lemou, F. Méhats.
A micro-macro method for a kinetic graphene model in one-space dimension, September 2018, working paper or preprint.
https://hal.inria.fr/hal-01883237 -
30E. Faou.
Linearized wave turbulence convergence results for three-wave systems, September 2018, https://arxiv.org/abs/1805.11269 - working paper or preprint.
https://hal.inria.fr/hal-01801810 -
31M. Fontaine, M. Lemou, F. Méhats.
Stable Ground States for the HMF Poisson Model, December 2018, https://arxiv.org/abs/1709.02234 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01582008 -
32N. J. Mauser, Y. Zhang, X. Zhao.
On the rotating nonlinear Klein-Gordon equation: non-relativistic limit and numerical methods, December 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01956352
-
33C. Birdsall, A. Langdon.
Plasmas physics via computer simulations, Taylor and Francis, New York, 2005. -
34A. Brizard, T. Hahm.
Foundations of nonlinear gyrokinetic theory, in: Reviews of Modern Physics, 2007, vol. 79. -
35J. Carr.
Applications of Centre Manifold Theory, in: Applied Mathematical Sciences Series, 1981, vol. 35. -
36P. Chartier, N. Crouseilles, M. Lemou, F. Méhats.
Uniformly accurate numerical schemes for highly-oscillatory Klein-Gordon and nonlinear Schrödinger equations, in: Numer. Math., 2015, vol. 129, pp. 513–536. -
37P. Chartier, A. Murua, J. Sanz-Serna.
Higher-order averaging, formal series and numerical integration III: error bounds, in: Foundation of Comput. Math., 2015, vol. 15, pp. 591–612. -
38A. Debussche, J. Vovelle.
Diffusion limit for a stochastic kinetic problem, in: Commun. Pure Appl. Anal., 2012, vol. 11, pp. 2305–2326. -
39E. Faou, F. Rousset.
Landau damping in Sobolev spaces for the Vlasov-HMF model, in: Arch. Ration. Mech. Anal., 2016, vol. 219, pp. 887–902. -
40E. Hairer, C. Lubich, G. Wanner.
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31, Springer, Berlin, 2006. -
41S. Jin, H. Lu.
An Asymptotic-Preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings, in: J. Comp. Phys., 2017, vol. 334, pp. 182–206. -
42M. Lemou, F. Méhats, P. Raphaël.
Orbital stability of spherical galactic models, in: Invent. Math., 2012, vol. 187, pp. 145–194. -
43C. Mouhot, C. Villani.
On Landau damping, in: Acta Math., 2011, vol. 207, pp. 29–201. -
44S. Nazarenko.
Wave turbulence, Springer-Verlag, 2011. -
45L. Perko.
Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, in: SIAM J. Appl. Math., 1969, vol. 17, pp. 698–724.