Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1A. Mensch.
Learning representations from functional MRI data, Université Paris-Saclay, September 2018.
https://tel.archives-ouvertes.fr/tel-01891633
Articles in International Peer-Reviewed Journals
-
2P. A. Ablin, J.-F. Cardoso, A. Gramfort.
Faster Independent Component Analysis by Preconditioning With Hessian Approximations, in: IEEE Transactions on Signal Processing, August 2018, vol. 66, no 15, pp. 4040-4049.
https://hal.inria.fr/hal-01970746 -
3Y. Bekhti, F. Lucka, J. Salmon, A. Gramfort.
A hierarchical Bayesian perspective on majorization-minimization for non-convex sparse regression: application to M/EEG source imaging, in: Inverse Problems, August 2018, vol. 34, no 8, 085010 p.
https://hal.inria.fr/hal-01970744 -
4D. Bzdok, N. Altman, M. Krzywinski.
Points of Significance: Statistics versus Machine Learning, in: Nature Methods, April 2018, pp. 1-7.
https://hal.archives-ouvertes.fr/hal-01723223 -
5D. Bzdok, M. Krzywinski, N. Altman.
Machine learning: Supervised methods, SVM and kNN, in: Nature Methods, January 2018, pp. 1-6.
https://hal.archives-ouvertes.fr/hal-01657491 -
6D. Bzdok, A. Meyer-Lindenberg.
Machine learning for precision psychiatry: Opportunites and challenges, in: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, February 2018.
https://hal.archives-ouvertes.fr/hal-01643933 -
7P. Cerda, G. Varoquaux, B. Kégl.
Similarity encoding for learning with dirty categorical variables, in: Machine Learning, June 2018, https://arxiv.org/abs/1806.00979. [ DOI : 10.1007/s10994-018-5724-2 ]
https://hal.inria.fr/hal-01806175 -
8S. Chambon, M. Galtier, P. J. Arnal, G. Wainrib, A. Gramfort.
A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series, in: IEEE Transactions on Neural Systems and Rehabilitation Engineering, March 2018, vol. 26, no 4, 17683810 p, https://arxiv.org/abs/1707.03321. [ DOI : 10.1109/TNSRE.2018.2813138 ]
https://hal.archives-ouvertes.fr/hal-01810436 -
9C. Cury, J. Glaunès, R. Toro, M. Chupin, G. Schumann, V. Frouin, J.-B. Poline, O. Colliot.
Statistical Shape Analysis of Large Datasets Based on Diffeomorphic Iterative Centroids, in: Frontiers in Neuroscience, November 2018, vol. 12. [ DOI : 10.3389/fnins.2018.00803 ]
https://hal.inria.fr/hal-01920263 -
10E. Dohmatob, G. Varoquaux, B. Thirion.
Inter-subject registration of functional images: do we need anatomical images ?, in: Frontiers in Neuroscience, March 2018.
https://hal.archives-ouvertes.fr/hal-01701619 -
11D. Engemann, F. Raimondo, J.-R. King, B. Rohaut, G. Louppe, F. Faugeras, J. Annen, H. Cassol, O. Gosseries, D. Fernandez-Slezak, S. Laureys, L. Naccache, S. Dehaene, J. Sitt.
Robust EEG-based cross-site and cross-protocol classification of states of consciousness, in: Brain - A Journal of Neurology , October 2018, vol. 141, no 11, pp. 3179–3192. [ DOI : 10.1093/brain/awy251 ]
https://hal.inria.fr/hal-01887793 -
12P. Filipiak, R. H. Fick, A. Petiet, M. Santin, A.-C. Philippe, S. Lehéricy, P. Ciuciu, R. Deriche, D. Wassermann.
Reducing the number of samples in spatiotemporal dMRI acquisition design, in: Magnetic Resonance in Medicine, November 2018. [ DOI : 10.1002/mrm.27601 ]
https://hal.archives-ouvertes.fr/hal-01928734 -
13F. Hadj-Selem, T. Lofstedt, E. Dohmatob, V. Frouin, M. Dubois, V. Guillemot, E. Duchesnay.
Continuation of Nesterov’s Smoothing for Regression with Structured Sparsity in High-Dimensional Neuroimaging, in: IEEE Transactions on Medical Imaging, 2018, vol. 2018. [ DOI : 10.1109/TMI.2018.2829802 ]
https://hal-cea.archives-ouvertes.fr/cea-01883286 -
14G. Hartwigsen, D. Bzdok.
Multivariate single-subject analysis of short-term reorganization in the language network, in: Cortex, July 2018, 4 p. [ DOI : 10.1016/j.cortex.2018.06.013 ]
https://hal.archives-ouvertes.fr/hal-01824229 -
15Y. Hong, L. J. O'Donnell, P. Savadjiev, F. Zhang, D. Wassermann, O. Pasternak, H. J. Johnson, J. Paulsen, J.-P. Vonsattel, N. Makris, C.-F. Westin, Y. Rathi.
Genetic load determines atrophy in hand cortico-striatal pathways in presymptomatic Huntington’s disease, in: Human Brain Mapping, 2018. [ DOI : 10.1002/hbm.24217 ]
https://hal.inria.fr/hal-01787886 -
16M. Jas, E. . Larson, D. Engemann, J. Leppäkangas, S. Taulu, M. Hämäläinen, A. Gramfort.
A Reproducible MEG/EEG Group Study With the MNE Software: Recommendations, Quality Assessments, and Good Practices, in: Frontiers in Neuroscience, August 2018, vol. 12. [ DOI : 10.3389/fnins.2018.00530 ]
https://hal.archives-ouvertes.fr/hal-01854552 -
17J. M. Kernbach, T. D. Satterthwaite, D. S. Bassett, J. Smallwood, D. Margulies, S. Krall, P. Shaw, G. Varoquaux, B. Thirion, K. Konrad, D. Bzdok.
Shared Endo-phenotypes of Default Mode Dysfunction in Attention Deficit/Hyperactivity Disorder and Autism Spectrum Disorder, in: Translational Psychiatry, July 2018.
https://hal.archives-ouvertes.fr/hal-01790245 -
18J. M. Kernbach, B. T. T. Yeo, J. Smallwood, D. Margulies, M. Thiebaut De Schotten, H. Walter, M. Sabuncu, A. J. Holmes, A. Gramfort, G. Varoquaux, B. Thirion, D. Bzdok.
Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants, in: Proceedings of the National Academy of Sciences of the United States of America , November 2018. [ DOI : 10.1073/pnas.1804876115 ]
https://hal.archives-ouvertes.fr/hal-01926796 -
19M. Kowalski, A. Meynard, H.-t. Wu.
Convex Optimization approach to signals with fast varying instantaneous frequency, in: Applied and Computational Harmonic Analysis, January 2018, vol. 44, no 1, pp. 89 - 122, https://arxiv.org/abs/1503.07591. [ DOI : 10.1016/j.acha.2016.03.008 ]
https://hal.archives-ouvertes.fr/hal-01199615 -
20C. Lazarus, P. Weiss, A. Vignaud, P. Ciuciu.
An Empirical Study of the Maximum Degree of Undersampling in Compressed Sensing for T2*-weighted MRI, in: Magnetic Resonance Imaging, 2018, pp. 1-31.
https://hal.inria.fr/hal-01829323 -
21J. Lefort-Besnard, D. S. Bassett, J. Smallwood, D. S. Margulies, B. Derntl, O. Gruber, A. Aleman, R. Jardri, G. Varoquaux, B. Thirion, S. B. Eickhoff, D. Bzdok.
Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function, in: Human Brain Mapping, January 2018, pp. 1-52.
https://hal.archives-ouvertes.fr/hal-01620441 -
22J. Lefort-Besnard, G. Varoquaux, B. Derntl, O. Gruber, A. Aleman, R. Jardri, I. Sommer, B. Thirion, D. Bzdok.
Patterns of Schizophrenia Symptoms: Hidden Structure in the PANSS Questionnaire, in: Translational Psychiatry, 2018.
https://hal.archives-ouvertes.fr/hal-01888918 -
23L. M. M. Lê, B. Kégl, A. Gramfort, C. Marini, D. Nguyen, M. Cherti, S. Tfaili, A. Tfayli, A. Baillet-Guffroy, P. Prognon, P. Chaminade, E. Caudron.
Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach, in: Talanta, July 2018, vol. 184, pp. 260-265.
https://hal.archives-ouvertes.fr/hal-01969999 -
24A. Mensch, J. Mairal, B. Thirion, G. Varoquaux.
Stochastic Subsampling for Factorizing Huge Matrices, in: IEEE Transactions on Signal Processing, January 2018, vol. 66, no 1, pp. 113-128, https://arxiv.org/abs/1701.05363. [ DOI : 10.1109/TSP.2017.2752697 ]
https://hal.archives-ouvertes.fr/hal-01431618 -
25A. L. Pinho, A. Amadon, T. Ruest, M. Fabre, E. Dohmatob, I. Denghien, C. Ginisty, S. Becuwe-Desmidt, S. Roger, L. Laurier, V. Joly-Testault, G. Médiouni-Cloarec, C. Doublé, B. Martins, P. Pinel, E. Eger, G. Varoquaux, C. Pallier, S. Dehaene, L. Hertz-Pannier, B. Thirion.
Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping, in: Scientific Data , June 2018, vol. 5, 180105 p. [ DOI : 10.1038/sdata.2018.105 ]
https://hal.archives-ouvertes.fr/hal-01817528 -
26V. Sydnor, A. M. Rivas-Grajales, A. Lyall, F. Zhang, S. Bouix, S. Karmacharya, M. Shenton, C.-F. Westin, N. Makris, D. Wassermann, L. J. O'Donnell, M. Kubicki.
A comparison of three fiber tract delineation methods and their impact on white matter analysis, in: NeuroImage, May 2018, vol. 178, pp. 318-331. [ DOI : 10.1016/j.neuroimage.2018.05.044 ]
https://hal.inria.fr/hal-01807178 -
27G. Varoquaux, R. Poldrack.
Predictive models avoid excessive reductionism in cognitive neuroimaging, in: Current Opinion in Neurobiology, April 2019, vol. 55. [ DOI : 10.1016/j.conb.2018.11.002 ]
https://hal.archives-ouvertes.fr/hal-01856412 -
28G. Varoquaux, Y. Schwartz, R. Poldrack, B. Gauthier, D. Bzdok, J.-B. Poline, B. Thirion.
Atlases of cognition with large-scale brain mapping, in: PLoS Computational Biology, 2018.
https://hal.inria.fr/hal-01908189 -
29L. Waller, A. Brovkin, L. Dorfschmidt, D. Bzdok, H. Walter, J. D. Kruschwitz.
GraphVar 2.0: a user-friendly toolbox for machine learning on functional connectivity measures, in: Journal of Neuroscience Methods, January 2018, 40 p.
https://hal.archives-ouvertes.fr/hal-01828991 -
30H.-T. Wang, D. Bzdok, D. Margulies, C. Craddock, M. Milham, E. Jefferies, J. Smallwood.
Patterns of thought: population variation in the associations between large-scale network organisation and self-reported experiences at rest, in: NeuroImage, May 2018.
https://hal.archives-ouvertes.fr/hal-01782292 -
31A. de Pierrefeu, T. Fovet, F. Hadj-Selem, T. Lofstedt, P. Ciuciu, S. Lefebvre, P. Thomas, R. Lopes, R. Jardri, E. Duchesnay.
Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity, in: Human Brain Mapping, April 2018, vol. 39, no 4, pp. 1777 - 1788. [ DOI : 10.1002/hbm.23953 ]
https://hal-cea.archives-ouvertes.fr/cea-01883271 -
32A. de Pierrefeu, T. Lofstedt, F. Hadj-Selem, M. Dubois, R. Jardri, T. Fovet, P. Ciuciu, V. Frouin, E. Duchesnay.
Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty, in: IEEE Transactions on Medical Imaging, February 2018, vol. 37, no 2, pp. 396 - 407. [ DOI : 10.1109/tmi.2017.2749140 ]
https://hal-cea.archives-ouvertes.fr/cea-01883278 -
33A. de Pierrefeu, T. Löfstedt, C. Laidi, F. Hadj-Selem, J. Bourgin, T. Hajek, F. Spaniel, M. Kolenic, P. Ciuciu, N. Hamdani, M. Leboyer, T. Fovet, R. Jardri, J. Houenou, E. Duchesnay.
Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity, in: Acta Psychiatrica Scandinavica, 2018, vol. 2018, pp. 1 - 10. [ DOI : 10.1111/acps.12964 ]
https://hal-cea.archives-ouvertes.fr/cea-01883283
International Conferences with Proceedings
-
34P. A. Ablin, J.-F. Cardoso, A. Gramfort.
Accelerating likelihood optimization for ICA on real signals, in: LVA-ICA 2018, Guildford, United Kingdom, July 2018, https://arxiv.org/abs/1806.09390.
https://hal.inria.fr/hal-01822602 -
35A. Alimi, R. H. Fick, D. Wassermann, R. Deriche.
Dmipy, a Diffusion Microstructure Imaging toolbox in Python to improve research reproducibility, in: MICCAI 2018 - Workshop on Computational Diffusion MRI, Granada, Spain, September 2018.
https://hal.inria.fr/hal-01873353 -
36H. Cherkaoui, L. E. Gueddari, C. Lazarus, A. Grigis, F. Poupon, A. Vignaud, S. Farrens, J.-L. Starck, P. Ciuciu.
Analysis vs Synthesis-based Regularization for combined Compressed Sensing and Parallel MRI Reconstruction at 7 Tesla, in: 26th European Signal Processing Conference (EUSIPCO 2018), Roma, Italy, September 2018.
https://hal.inria.fr/hal-01800700 -
37J. Dockès, D. Wassermann, R. Poldrack, F. M. Suchanek, B. Thirion, G. Varoquaux.
Text to brain: predicting the spatial distribution of neuroimaging observations from text reports, in: MICCAI 2018 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain, September 2018, pp. 1-18, https://arxiv.org/abs/1806.01139.
https://hal.archives-ouvertes.fr/hal-01807295 -
38L. El Gueddari, C. Lazarus, H. Carrié, A. Vignaud, P. Ciuciu.
Self-calibrating nonlinear reconstruction algorithms for variable density sampling and parallel reception MRI, in: 10th IEEE Sensor Array and Multichannel Signal Processing workshop, Sheffield, United Kingdom, July 2018, pp. 1-5.
https://hal.inria.fr/hal-01782428 -
39P. Filipiak, R. Fick, A. Petiet, M. Santin, A.-C. Philippe, S. Lehéricy, R. Deriche, D. Wassermann.
Coarse-Grained Spatiotemporal Acquisition Design for Diffusion MRI, in: ISBI 2019 - Proceedings of The IEEE International Symposium on Biomedical Imaging, Venice, Italy, April 2019.
https://hal.inria.fr/hal-01973588 -
40G. Gallardo, N. Gayraud, R. Deriche, M. Clerc, S. Deslauriers-Gauthier, D. Wassermann.
Solving the Cross-Subject Parcel Matching Problem using Optimal Transport, in: International Conference on Medical Image Computing and Computer-Assisted Intervention 2018, Granada, Spain, September 2018.
https://hal.archives-ouvertes.fr/hal-01935684 -
41D. La Rocca, P. Ciuciu, V. van Wassenhove, H. Wendt, P. Abry, R. Leonarduzzi.
Scale-free functional connectivity analysis from source reconstructed MEG data, in: EUSIPCO 2018 - 26th European Signal Processing Conference, Roma, Italy, September 2018, pp. 1-5.
https://hal.inria.fr/hal-01800620 -
42C. Maumet, G. Flandin, M. Perez-Guevara, J.-B. Poline, J. Rajendra, R. Reynolds, B. Thirion, T. E. Nichols.
A standardised representation for non-parametric fMRI results, in: OHBM 2018 - Annual meeting of the Organization of Human Brain Mapping, Singapore, Singapore, June 2018, pp. 1-4.
http://www.hal.inserm.fr/inserm-01828914 -
43A. Mensch, M. Blondel.
Differentiable Dynamic Programming for Structured Prediction and Attention, in: 35th International Conference on Machine Learning, Stockholm, Sweden, Proceedings of the 35th International Conference on Machine Learning, July 2018, vol. 80.
https://hal.archives-ouvertes.fr/hal-01809550 -
44H. Wendt, P. Abry, P. Ciuciu.
Spatially regularized wavelet leader scale-free analysis of fMRI data, in: IEEE International Symposium on Biomedical Imaging, Washington, DC, United States, April 2018.
https://hal.inria.fr/hal-01782332
Conferences without Proceedings
-
45S. Chambon, V. Thorey, P. J. Arnal, E. Mignot, A. Gramfort.
A deep learning architecture to detect events in EEG signals during sleep, in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2018), Aalborg, Denmark, September 2018.
https://hal.archives-ouvertes.fr/hal-01917529 -
46D. Chyzhyk, G. Varoquaux, B. Thirion, M. Milham.
Controlling a confound in predictive models with a test set minimizing its effect, in: PRNI 2018 - 8th International Workshop on Pattern Recognition in Neuroimaging, Singapore, Singapore, June 2018, pp. 1-4.
https://hal.archives-ouvertes.fr/hal-01831701 -
47T. Dupré la Tour, Y. Grenier, A. Gramfort.
Driver estimation in non-linear autoregressive models, in: 43nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018.
https://hal.archives-ouvertes.fr/hal-01696786 -
48M. Frigo, G. Gallardo, I. Costantini, A. Daducci, D. Wassermann, R. Deriche, S. Deslauriers-Gauthier.
Reducing false positive connection in tractograms using joint structure-function filtering, in: OHBM 2018 - Organization for Human Brain Mapping, Singapore, Singapore, June 2018, pp. 1-3.
https://hal.inria.fr/hal-01737434 -
49G. Gallardo, S. Bouix, D. Wassermann.
Diffusion Driven Label Fusion for White Matter Multi-Atlas Segmentation, in: OHBM 2018 - Organization for Human Brain Mapping, Singapore, Singapore, June 2018, pp. 1-2.
https://hal.archives-ouvertes.fr/hal-01737422 -
50N. T. H. Gayraud, G. Gallardo, M. Clerc, D. Wassermann.
Solving the Cross-Subject Parcel Matching Problem: Comparing Four Methods Using Extrinsic Connectivity, in: OHBM 2018, Singapore, Singapore, June 2018.
https://hal.archives-ouvertes.fr/hal-01737366 -
51T. Kerdreux, F. Pedregosa, A. D'Aspremont.
Frank-Wolfe with Subsampling Oracle, in: ICML 2018 - 35th International Conference on Machine Learning, Stockholm, Sweden, July 2018, https://arxiv.org/abs/1803.07348.
https://hal.archives-ouvertes.fr/hal-01927391 -
52T. D. La Tour, T. Moreau, M. Jas, A. Gramfort.
Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals, in: Advances in Neural Information Processing Systems (NeurIPS), Montréal, Canada, December 2018, https://arxiv.org/abs/1805.09654.
https://hal.archives-ouvertes.fr/hal-01966685 -
53M. Massias, O. Fercoq, A. Gramfort, J. Salmon.
Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression, in: 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018), Lanzarote, Spain, April 2018.
https://hal.archives-ouvertes.fr/hal-01812011 -
54M. Massias, A. Gramfort, J. Salmon.
Celer: a Fast Solver for the Lasso with Dual Extrapolation, in: ICML 2018 - 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR, July 2018, vol. 80, pp. 3321-3330.
https://hal.archives-ouvertes.fr/hal-01833398 -
55H. Richard, A. Pinho, B. Thirion, G. Charpiat.
Optimizing deep video representation to match brain activity, in: CCN 2018 - Conference on Cognitive Computational Neuroscience, Philadelphia, United States, September 2018, https://arxiv.org/abs/1809.02440.
https://hal.archives-ouvertes.fr/hal-01868735 -
56J.-B. Schiratti, J.-E. Le Douget, M. Le Van Quyen, S. Essid, A. Gramfort.
An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings, in: International Conference on Acoustics, Speech, and Signal Processing, Calgary, Canada, April 2018.
https://hal.archives-ouvertes.fr/hal-01724272 -
57A. de Pierrefeu, T. Lofstedt, C. Laidi, F. Hadj-Selem, M. Leboyer, P. Ciuciu, J. Houenou, E. Duchesnay.
Interpretable and stable prediction of schizophrenia on a large multisite dataset using machine learning with structured sparsity, in: 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore, Singapore, IEEE, June 2018. [ DOI : 10.1109/PRNI.2018.8423946 ]
https://hal-cea.archives-ouvertes.fr/cea-01883311
Other Publications
-
58P. A. Ablin, J.-F. Cardoso, A. Gramfort.
Beyond Pham's algorithm for joint diagonalization, November 2018, https://arxiv.org/abs/1811.11433 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01936887 -
59P. A. Ablin, D. Fagot, H. Wendt, A. Gramfort, C. Févotte.
A Quasi-Newton algorithm on the orthogonal manifold for NMF with transform learning, November 2018, https://arxiv.org/abs/1811.02225 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01912918 -
60F. Almairac, P. Filipiak, L. Slabu, M. Clerc, T. Papadopoulo, D. Fontaine, L. Mondot, S. Chanelet, D. Wassermann, R. Deriche.
Bridging Brain Structure and Function by Correlating Structural Connectivity and Cortico-Cortical Transmission, June 2018, 2nd C@UCA meeting, Poster.
https://hal.inria.fr/hal-01852956 -
61D. Bzdok, D. Engemann, O. Grisel, G. Varoquaux, B. Thirion.
Prediction and inference diverge in biomedicine: Simulations and real-world data, April 2018, working paper or preprint. [ DOI : 10.1101/327437 ]
https://hal.archives-ouvertes.fr/hal-01848319 -
62D. Bzdok, T. M. Karrer.
Single-Subject Prediction: A Statistical Paradigm for Precision Psychiatry, February 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01714822 -
63K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham, B. Thirion, G. Varoquaux.
Benchmarking functional connectome-based predictive models for resting-state fMRI, November 2018, working paper or preprint.
https://hal.inria.fr/hal-01824205 -
64M. Gabrié, A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, L. Zdeborová.
Entropy and mutual information in models of deep neural networks, November 2018, working paper or preprint.
https://hal-cea.archives-ouvertes.fr/cea-01930228 -
65J.-R. King, L. . Gwilliams, C. . Holdgraf, J. . Sassenhagen, A. . Barachant, D. . Engemann, E. . Larson, A. Gramfort.
Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition, July 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01848442 -
66C. Lazarus, P. Weiss, N. Chauffert, F. Mauconduit, L. El Gueddari, C. Destrieux, I. Zemmoura, A. Vignaud, P. Ciuciu.
Variable-density k-space filling curves for accelerated Magnetic Resonance Imaging, August 2018, working paper or preprint.
https://hal.inria.fr/hal-01861760 -
67A. Manoel, F. Krzakala, B. Thirion, G. Varoquaux, L. Zdeborová.
Approximate message-passing for convex optimization with non-separable penalties, November 2018, https://arxiv.org/abs/1809.06304 - working paper or preprint.
https://hal-cea.archives-ouvertes.fr/cea-01932983 -
68A. Mensch, J. Mairal, B. Thirion, G. Varoquaux.
Extracting Universal Representations of Cognition across Brain-Imaging Studies, October 2018, https://arxiv.org/abs/1809.06035 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01874713 -
69D. Wassermann, D. V. Nguyen, G. Gallardo, J.-R. Li, W. Cai, V. Menon.
Sensing Von Economo Neurons in the Insula with Multi-shell Diffusion MRI, 2018, International Society for Magnetic Resonance in Medicine, Poster.
https://hal.inria.fr/hal-01807704
-
70K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson, M. R. Munafò.
Power failure: why small sample size undermines the reliability of neuroscience, in: Nature Reviews Neuroscience, 2013, vol. 14, no 5, pp. 365–376. -
71R. A. Poldrack, C. I. Baker, J. Durnez, K. J. Gorgolewski, P. M. Matthews, M. R. Munafò, T. E. Nichols, J.-B. Poline, E. Vul, T. Yarkoni.
Scanning the horizon: towards transparent and reproducible neuroimaging research, in: Nature Reviews Neuroscience, 2017, vol. 18, no 2, pp. 115–126.