Bibliography
Major publications by the team in recent years
-
1V. Acary, B. Brogliato.
Numerical methods for nonsmooth dynamical systems. Applications in mechanics and electronics, Lecture Notes in Applied and Computational Mechanics 35. Berlin: Springer. xxi, 525 p. , 2008. -
2B. Brogliato.
Nonsmooth mechanics, Communications and Control Engineering Series, Third, Springer, [Cham], 2016, xxii+629 p, Models, dynamics and control.
http://dx.doi.org/10.1007/978-3-319-28664-8
Articles in International Peer-Reviewed Journals
-
3B. Brogliato, J. Kövecses, V. Acary.
The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem, in: Multibody System Dynamics, 2020, vol. 48, no 2, pp. 151-192. [ DOI : 10.1007/s11044-019-09712-1 ]
https://hal.inria.fr/hal-02315547 -
4B. Brogliato, A. Polyakov, D. Efimov.
The implicit discretization of the super-twisting sliding-mode control algorithm, in: IEEE Transactions on Automatic Control, 2019, pp. 1-8, forthcoming. [ DOI : 10.1109/TAC.2019.2953091 ]
https://hal.inria.fr/hal-02336599 -
5B. Brogliato, A. Tanwani.
Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, in: SIAM Review, 2019, pp. 1-125, forthcoming.
https://hal.inria.fr/hal-02379498 -
6A. Ferrante, A. Lanzon, B. Brogliato.
A direct proof of the equivalence of side conditions for strictly positive real matrix transfer functions, in: IEEE Transactions on Automatic Control, 2020, vol. 65, no 1, pp. 450-452. [ DOI : 10.1109/TAC.2019.2918123 ]
https://hal.inria.fr/hal-01947938 -
7O. Huber, V. Acary, B. Brogliato.
Lyapunov stability analysis of the implicit discrete-time twisting control algorithm, in: IEEE Transactions on Automatic Control, 2019, pp. 1-8, forthcoming. [ DOI : 10.1109/TAC.2019.2940323 ]
https://hal.inria.fr/hal-01622092 -
8G. James, K. Vorotnikov, B. Brogliato.
Kuwabara-Kono numerical dissipation: a new method to simulate granular matter, in: IMA Journal of Applied Mathematics, 2019, pp. 1-29, forthcoming.
https://hal.archives-ouvertes.fr/hal-01878973 -
9F. Miranda-Villatoro, F. Castaños, B. Brogliato.
Continuous and discrete-time stability of a robust set-valued nested controller, in: Automatica, September 2019, vol. 107, pp. 406-417. [ DOI : 10.1016/j.automatica.2019.06.003 ]
https://hal.inria.fr/hal-01944920 -
10A. Polyakov, D. Efimov, B. Brogliato.
Consistent Discretization of Finite-time and Fixed-time Stable Systems, in: SIAM Journal on Control and Optimization, 2019, vol. 57, no 1, pp. 78-103. [ DOI : 10.1137/18M1197345 ]
https://hal.inria.fr/hal-01838712 -
11A. Tonnelier.
Signal propagations along excitable chains, in: SIAM Journal on Applied Dynamical Systems, 2019, vol. 18, no 3, pp. 1391-1419. [ DOI : 10.1137/18M1234229 ]
https://hal.archives-ouvertes.fr/hal-02180588 -
12A. Vieira, B. Brogliato, C. Prieur.
Quadratic Optimal Control of Linear Complementarity Systems: First order necessary conditions and numerical analysis, in: IEEE Transactions on Automatic Control, 2020, pp. 1-8, forthcoming. [ DOI : 10.1109/TAC.2019.2945878 ]
https://hal.inria.fr/hal-01690400
International Conferences with Proceedings
-
13A. Polyakov, D. Efimov, B. Brogliato, M. Reichhartinger.
Consistent Discretization of Locally Homogeneous Finite-time Stable Control Systems, in: ECC 2019 - 18th European Control Conference, Naples, Italy, IEEE, June 2019, pp. 1616-1621. [ DOI : 10.23919/ECC.2019.8795633 ]
https://hal.inria.fr/hal-02069717 -
14A. Vieira, B. Brogliato, C. Prieur.
Optimality conditions for the minimal time problem for Complementarity Systems, in: Joint 8th IFAC Symposium on Mechatronic Systems (MECHATRONICS'19) and 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS'19), Vienne, Austria, IFAC, September 2019, pp. 325-330.
https://hal.inria.fr/hal-01856054
Scientific Books (or Scientific Book chapters)
-
15B. Brogliato, R. Lozano, B. Maschke, O. Egeland.
Dissipative Systems Analysis and Control : Theory and Application, Communication and Control Engineering, Springer International Publishing, 2020. [ DOI : 10.1007/978-3-030-19420-8 ]
https://hal.archives-ouvertes.fr/hal-02407669
Internal Reports
-
16V. Acary, O. Bonnefon, M. Brémond, O. Huber, F. Pérignon, S. Sinclair.
An introduction to Siconos, Inria, November 2019, no RT-0340, 97 p.
https://hal.inria.fr/inria-00162911 -
17B. Brogliato.
Nonsmooth Mechanics. Models, Dynamics and Control : Erratum/Addendum, Inria Grenoble - Rhone-Alpes, September 2019, pp. 1-15.
https://hal.inria.fr/hal-01331565 -
18A. Rocca, V. Acary, B. Brogliato.
Index-2 hybrid DAE: a case study with well-posedness and numerical analysis, Inria - Research Centre Grenoble – Rhône-Alpes, November 2019.
https://hal.inria.fr/hal-02381489
Other Publications
-
19V. Acary, F. Bourrier.
Coulomb friction with rolling resistance as a cone complementarity problem, November 2019, working paper or preprint.
https://hal.inria.fr/hal-02382213 -
20C. Bertrand, V. Acary, C. H. Lamarque, A. Ture Savadkoohi.
A robust and efficient numerical finite element method for cables, January 2020, working paper or preprint.
https://hal.inria.fr/hal-02439982 -
21A. Rocca, V. Acary, B. Brogliato.
Index-2 hybrid DAE: a case study with well-posedness and numerical analysis, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02391311 -
22V. N. Vo.
Trajectory tracking design for linear complementarity systems with continuous solutions, university of Limoges, France, July 2019, INTERNSHIP REPORT for the degree of Master in Applied Mathematics.
https://hal.inria.fr/hal-02267750
-
23V. Acary.
Higher order event capturing time–stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts., in: Applied Numerical Mathematics, 2012, vol. 62, pp. 1259–1275. [ DOI : 10.1016/j.apnum.2012.06.026 ]
http://hal.inria.fr/inria-00476398 -
24V. Acary.
Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb's friction, in: Computer Methods in Applied Mechanics and Engineering, 2013, vol. 256, pp. 224–250. [ DOI : 10.1016/j.cma.2012.12.012 ]
http://www.sciencedirect.com/science/article/pii/S0045782512003829 -
25V. Acary.
Energy conservation and dissipation properties of time-integration methods for the nonsmooth elastodynamics with contact, in: Zeitschrift für Angewandte Mathematik und Mechanik, 2016, vol. 95, no 5, pp. 585–603. -
26V. Acary, O. Bonnefon, B. Brogliato.
Nonsmooth modeling and simulation for switched circuits., Lecture Notes in Electrical Engineering 69. Dordrecht: Springer. xxiii, 284 p., 2011.
http://dx.doi.org/10.1007/978-90-481-9681-4 -
27V. Acary, M. Brémond, O. Huber.
On solving frictional contact problems: formulations and comparisons of numerical methods., in: Advanced Topics in Nonsmooth Dynamics, Acary, V. and Brüls. O. and Leine, R. (eds). Springer Verlag, 2018, To appear. -
28V. Acary, B. Brogliato.
Numerical methods for nonsmooth dynamical systems. Applications in mechanics and electronics, Lecture Notes in Applied and Computational Mechanics 35. Berlin: Springer. xxi, 525 p. , 2008. -
29V. Acary, B. Brogliato.
Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems, in: Systems and Control Letters, 2010, vol. 59, no 5, pp. 284–295, doi:10.1016/j.sysconle.2010.03.002. -
30V. Acary, B. Brogliato, D. Goeleven.
Higher order Moreau's sweeping process: mathematical formulation and numerical simulation, in: Mathematical Programming Ser. A, 2008, vol. 113, pp. 133-217. -
31V. Acary, B. Brogliato, Y. Orlov.
Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection, in: IEEE Transactions on Automatic Control, may 2012, vol. 57, no 5, pp. 1087–1101.
http://dx.doi.org/10.1109/TAC.2011.2174676 -
32V. Acary, M. Brémond, K. Kapellos, J. Michalczyk, R. Pissard-Gibollet.
Mechanical simulation of the Exomars rover using Siconos in 3DROV, in: ASTRA 2013 - 12th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, Netherlands, ESA/ESTEC, May 2013.
http://hal.inria.fr/hal-00821221 -
33V. Acary, M. Brémond, T. Koziara, F. Pérignon.
FCLIB: a collection of discrete 3D Frictional Contact problems, Inria, February 2014, no RT-0444, 34 p.
https://hal.inria.fr/hal-00945820 -
34V. Acary, M. Brémond, O. Huber.
On solving contact problems with Coulomb friction: formulations and numerical comparisons, in: Advanced Topics in Nonsmooth Dynamics - Transactions of the European Network for Nonsmooth Dynamics, S. I. Publishing (editor), June 2018, pp. 375-457. [ DOI : 10.1007/978-3-319-75972-2_10 ]
https://hal.inria.fr/hal-01878539 -
35V. Acary, H. de Jong, B. Brogliato.
Numerical Simulation of Piecewise-Linear Models of Gene Regulatory Networks Using Complementarity Systems Theory, in: Physica D, January 2013, vol. 269, pp. 103–199. -
36V. Acary, Y. Monerie.
Nonsmooth fracture dynamics using a cohesive zone approach, Inria, 2006, no RR-6032, 56 p.
http://hal.inria.fr/inria-00110560/en/ -
37S. Adly.
A Variational Approach to Nonsmooth Dynamics. Applications in Unilateral Mechanics and Electronics, SpringerBriefs in Mathematics, Springer Verlag, 2017. -
38N. Akhadkar, V. Acary, B. Brogliato.
Multibody systems with 3D revolute joint clearance, modelling, numerical simulation and experimental validation: an industrial case study, in: Multibody System Dynamics, 2017. -
39R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine.
The algorithmic analysis of hybrid systems, in: Theoretical Computer Science, 1995, vol. 138, no 1, pp. 3–34. -
40M. Arnold, O. Brüls, A. Cardona.
Error analysis of generalized- Lie group time integration methods for constrained mechanical systems, in: Numerische Mathematik, Jan 2015, vol. 129, no 1, pp. 149–179.
https://doi.org/10.1007/s00211-014-0633-1 -
41A. Beck, M. Teboulle.
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, in: SIAM Journal on Imaging Sciences, 2009, vol. 2, no 1, pp. 183-202. [ DOI : 10.1137/080716542 ] -
42V. N. Biktashev, M. A. Tsyganov.
Solitary waves in excitable systems with cross-diffusion, in: Proc. R. Soc. A, 2005, vol. 461, pp. 3711-3730. -
43F. Bourrier, F. Berger, P. Tardif, L. Dorren, O. Hungr.
Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches, in: Earth Surface Processes and Landforms, 2012, vol. 37, no 6, pp. 656–665.
http://dx.doi.org/10.1002/esp.3202 -
44F. Bourrier, L. Dorren, F. Nicot, F. Berger, F. Darve.
Toward objective rockfall trajectory simulation using a stochastic impact model, in: Geomorphology, 2009, vol. 110, no 3, pp. 68–79. [ DOI : 10.1016/j.geomorph.2009.03.017 ]
http://www.sciencedirect.com/science/article/pii/S0169555X09001251 -
45B. Brogliato.
Nonsmooth mechanics, Communications and Control Engineering Series, Third, Springer, [Cham], 2016, xxii+629 p, Models, dynamics and control.
http://dx.doi.org/10.1007/978-3-319-28664-8 -
46B. Brogliato.
Feedback control of multibody systems with joint clearance and dynamic backlash: a tutorial, in: Multibody System Dynamics, Aug 2017.
https://doi.org/10.1007/s11044-017-9585-4 -
47B. Brogliato, A. Polyakov.
Globally stable implicit Euler time-discretization of a nonlinear single-input sliding-mode control system, in: 2015 54th IEEE Conference on Decision and Control (CDC), Dec 2015, pp. 5426-5431.
http://dx.doi.org/10.1109/CDC.2015.7403069 -
48B. Brogliato, A. Z. Rio.
On the control of complementary-slackness juggling mechanical systems, in: IEEE Transactions on Automatic Control, Feb 2000, vol. 45, no 2, pp. 235-246.
http://dx.doi.org/10.1109/9.839946 -
49B. Brogliato, L. Thibault.
Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems, in: J. Convex Anal., 2010, vol. 17, no 3-4, pp. 961–990. -
50O. Brüls, V. Acary, A. Cardona.
Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized- scheme, in: Computer Methods in Applied Mechanics and Engineering, November 2014, vol. 281, pp. 131-161. [ DOI : 10.1016/j.cma.2014.07.025 ]
http://hal.inria.fr/hal-01059823 -
51B. Caillaud.
Hybrid vs. nonsmooth dynamical systems, 2014, synchron, http://synchron2014.inria.fr/wp-content/uploads/sites/13/2014/12/Caillaud-nsds.pdf. -
52G. Capobianco, S. R. Eugster.
Time finite element based Moreau‐type integrators, in: International Journal for Numerical Methods in Engineering, 2018, vol. 114, no 3, pp. 215-231.
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5741 -
53L. Carloni, R. Passerone, A. Pinto, A. Sangiovanni–Vicentelli.
Languages and tools for hybrid systems design, in: Foundations and Trends in Electronic Design Automation, 2006, vol. 1, no 1/2, pp. 1–193. -
54Q. Z. Chen, V. Acary, G. Virlez, O. Brüls.
A nonsmooth generalized- scheme for flexible multibody systems with unilateral constraints, in: International Journal for Numerical Methods in Engineering, 2013, vol. 96, no 8, pp. 487–511.
http://dx.doi.org/10.1002/nme.4563 -
55R. W. Cottle, J. Pang, R. E. Stone.
The Linear Complementarity Problem, Academic Press, Inc., Boston, MA, 1992. -
56L. Dorren, F. Berger, M. Jonsson, M. Krautblatter, M. Mölk, M. Stoffel, A. Wehrli.
State of the art in rockfall – forest interactions, in: Schweizerische Zeitschrift fur Forstwesen, 2007, vol. 158, no 6, pp. 128-141.
https://doi.org/10.3188/szf.2007.0128 -
57F. Dubois, V. Acary, M. Jean.
The Contact Dynamics method: A nonsmooth story , in: Comptes Rendus Mécanique, March 2018, vol. 346, no 3, pp. 247-262. [ DOI : 10.1016/j.crme.2017.12.009 ]
https://hal.archives-ouvertes.fr/hal-01676287 -
58S. Dupire, F. Bourrier, J.-M. Monnet, S. Bigot, L. Borgniet, F. Berger, T. Curt.
Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall, in: Ecological Indicators, 2016, vol. 67, pp. 98–107. [ DOI : 10.1016/j.ecolind.2016.02.023 ]
http://www.sciencedirect.com/science/article/pii/S1470160X16300449 -
59F. Facchinei, J. S. Pang.
Finite-dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, Springer Verlag NY. Inc., 2003, vol. I & II. -
60A. F. Filippov.
Differential Equations with Discontinuous Right Hand Sides, Kluwer, Dordrecht, the Netherlands, 1988. -
61M. P. Friedlander, D. Orban.
A primal–dual regularized interior-point method for convex quadratic programs, in: Mathematical Programming Computation, 2012, vol. 4, no 1, pp. 71–107.
http://dx.doi.org/10.1007/s12532-012-0035-2 -
62D. Goeleven.
Complementarity and Variational Inequalities in Electronics, Academic Press, 2017. -
63S. Greenhalgh, V. Acary, B. Brogliato.
On preserving dissipativity properties of linear complementarity dynamical systems with the -method, in: Numerische Mathematik, 2013, vol. 125, pp. 601–637. -
64F. Génot, B. Brogliato.
New results on Painlevé Paradoxes, in: European Journal of Mechanics - A. solids, 1999, vol. 18, pp. 653-677. -
65T. Henzinger.
The Theory of Hybrid Automata, in: Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS), 1996, pp. 278-292. -
66J. Hiriart-Urruty, C. Lemaréchal.
Fundamentals of Convex Analysis, Springer Verlag, 2001. -
67J. Hiriart-Urruty, C. Lemaréchal.
Convex Analysis and Minimization Algorithms, Springer Verlag, Berlin, 1993, vol. I and II. -
68O. Huber, V. Acary, B. Brogliato.
Lyapunov stability and performance analysis of the implicit discrete sliding mode control, in: IEEE Transactions on Automatic Control, 2016, vol. 61, no 10, pp. 3016-3030, In press. -
69O. Huber, V. Acary, B. Brogliato, F. Plestan.
Implicit discrete-time twisting controller without numerical chattering: analysis and experimental results, in: Control Engineering Practice, 2016, vol. 46, pp. 129–141. -
70O. Huber, B. Brogliato, V. Acary, A. Boubakir, F. Plestan, B. Wang.
Experimental results on implicit and explicit time-discretization of equivalent-control-based sliding-mode control, in: Recent Trends in Sliding Mode Control, L. Fridman, J. Barbot, F. Plestan (editors), IET, 2016.
https://hal.inria.fr/hal-01238120 -
71G. James.
Periodic travelling waves and compactons in granular chains, in: J. Nonlinear Sci., 2012, vol. 22, pp. 813-848. -
72G. James, P. G. Kevrekidis, J. Cuevas.
Breathers in oscillator chains with Hertzian interactions, in: Physica D, 2013, vol. 251, pp. 39–59. -
73M. Jean, V. Acary, Y. Monerie.
Non Smooth Contact dynamics approach of cohesive materials, in: Philisophical Transactions : Mathematical, Physical & Engineering Sciences, The Royal Society, London A, 2001, vol. A359, no 1789, pp. 2497–2518. -
74G. Kerschen, M. Peeters, J. Golinval, A. Vakakis.
Nonlinear normal modes, Part I: A useful framework for the structural dynamicist, in: Mechanical Systems and Signal Processing, 2009, vol. 23, no 1, pp. 170–194, Special Issue: Non-linear Structural Dynamics. [ DOI : 10.1016/j.ymssp.2008.04.002 ]
http://www.sciencedirect.com/science/article/pii/S0888327008001015 -
75R. Leine.
Bifurcation in Discontinuous Mechanical Systems of Filippov-Type, Technische Universiteit Eindhoven, 2000. -
76R. I. Leine, A. Schweizer, M. Christen, J. Glover, P. Bartelt, W. Gerber.
Simulation of rockfall trajectories with consideration of rock shape, in: Multibody System Dynamics, Aug 2014, vol. 32, no 2, pp. 241–271.
https://doi.org/10.1007/s11044-013-9393-4 -
77R. Leine, N. van de Wouw.
Stability and Convergence of Mechanical Systems with Unilateral Constraints, Lecture Notes in Applied and Computational Mechanics, Springer Verlag, 2008, vol. 36. -
78L. Liu, G. James, P. Kevrekidis, A. Vainchtein.
Nonlinear waves in a strongly resonant granular chain, in: Nonlinearity, 2016, pp. 3496-3527. -
79F. A. Miranda-Villatoro, B. Brogliato, F. Castanos.
Multivalued Robust Tracking Control of Lagrange Systems: Continuous and Discrete–Time Algorithms, in: IEEE Transactions on Automatic Control, 2017, vol. PP, no 99, 1 p.
http://dx.doi.org/10.1109/TAC.2017.2662804 -
80J. E. Morales, G. James, A. Tonnelier.
Solitary waves in the excitable Burridge-Knopoff model, Inria Grenoble - Rhône-Alpes, December 2016, no RR-8996, To appear in Wave Motion.
https://hal.inria.fr/hal-01411897 -
81J. E. Morales, G. James, A. Tonnelier.
Traveling waves in a spring-block chain sliding down a slope, in: Phys. Rev. E 96, 2017, vol. 96, no 012227. -
82Y. Nesterov.
A method of solving a convex programming problem with convergence rate , in: Soviet Mathematics Doklady, 1983, vol. 27, no 2, pp. 372–376. -
83N. Nguyen, B. Brogliato.
Multiple Impacts in Dissipative Granular Chains, Lecture Notes in Applied and Computational Mechanics, Springer Verlag, 2014, vol. 72, XXII, 234 p. 109 illus.. -
84F. Z. Nqi, M. Schatzman.
Computation of Lyapunov Exponents for dynamical system with impact, in: Applied Mathematial Sciences, 2010, vol. 4, no 5, pp. 237–252. -
85M. Porter, P. Kevrekidis, C. Daraio.
Granular crystals: Nonlinear dynamics meets materials engineering, in: Physics Today, 2015, vol. 68, no 44. -
86R. Rockafellar.
Convex Analysis, Princeton University Press, 1970. -
87T. Schindler, V. Acary.
Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook, in: Mathematics and Computers in Simulation, 2013, vol. 95, pp. 180–199. [ DOI : 10.1016/j.matcom.2012.04.012 ]
http://www.sciencedirect.com/science/article/pii/S0378475412001231 -
88T. Schindler, S. Rezaei, J. Kursawe, V. Acary.
Half-explicit timestepping schemes on velocity level based on time-discontinuous Galerkin methods, in: Computer methods in Applied Mechanics in Engineering, 2015, vol. 290, no 15, pp. 250–276. -
89C. Studer.
Numerics of Unilateral Contacts and Friction. – Modeling and Numerical Time Integration in Non-Smooth Dynamics, Lecture Notes in Applied and Computational Mechanics, Springer Verlag, 2009, vol. 47. -
90A. Tonnelier.
McKean caricature of the FitzHugh-Nagumo model: traveling pulses in a discrete diffusive medium, in: Phys. Rev. E, 2003, vol. 67, no 036105. -
91A. Vieira, B. Brogliato, C. Prieur.
Optimal control of linear complementarity systems, in: IFAC World Congress on Automatic Control, Toulouse, France, 2017. -
92B. Wang, B. Brogliato, V. Acary, A. Boubakir, F. Plestan.
Experimental comparisons between implicit and explicit implementations of discrete-time sliding mode controllers: towards input and output chattering suppression, in: IEEE Transactions on Control Systems Technology, 2015, vol. 23, no 5, pp. 2071–2075. -
93M. di Bernardo, C. Budd, A. Champneys, P. Kowalczyk.
Piecewise-smooth dynamical systems : theory and applications, Applied mathematical sciences, Springer, London, 2008.
http://opac.inria.fr/record=b1122347