Section: Research Program
The mixed-effects models
Mixed-effects models are statistical models with both fixed effects and random effects. They are well-adapted to situations where repeated measurements are made on the same individual/statistical unit.
Consider first a single subject of the population. Let be the vector of observations for this subject. The model that describes the observations is assumed to be a parametric probabilistic model: let be the probability distribution of , where is a vector of parameters.
In a population framework, the vector of parameters is assumed to be drawn from a population distribution where is a vector of population parameters.
Then, the probabilistic model is the joint probability distribution
To define a model thus consists in defining precisely these two terms.
In most applications, the observed data are continuous longitudinal data. We then assume the following representation for :
Here, is the observation obtained from subject at time . The residual errors are assumed to be standardized random variables (mean zero and variance 1). The residual error model is represented by function in model (2).
Function is usually the solution to a system of ordinary differential equations (pharmacokinetic/pharmacodynamic models, etc.) or a system of partial differential equations (tumor growth, respiratory system, etc.). This component is a fundamental component of the model since it defines the prediction of the observed kinetics for a given set of parameters.
The vector of individual parameters is usually function of a vector of population parameters , a vector of random effects , a vector of individual covariates (weight, age, gender, ...) and some fixed effects .
The joint model of and depends then on a vector of parameters .